sneak/Shared/TreeScene.cs

187 lines
6.9 KiB
C#

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using System;
using System.Collections.Generic;
namespace SemiColinGames {
public sealed class TreeScene : IScene {
const int MAX_SEGMENTS = 1000;
const int MAX_VERTICES = MAX_SEGMENTS * 6; // 2 triangles per segment
private readonly Color backgroundColor = Color.SkyBlue;
private readonly GraphicsDevice graphics;
private readonly BasicEffect basicEffect;
private VertexPositionColor[] vertices;
private VertexBuffer vertexBuffer;
public TreeScene(GraphicsDevice graphics) {
this.graphics = graphics;
basicEffect = new BasicEffect(graphics) {
World = Matrix.CreateTranslation(0, 0, 0),
View = Matrix.CreateLookAt(Vector3.Backward, Vector3.Zero, Vector3.Up),
VertexColorEnabled = true,
Projection = Matrix.CreateOrthographicOffCenter(-1920 / 2, 1920 / 2, -1080 / 4, 1080 * 3 / 4, -1, 1)
};
vertices = new VertexPositionColor[MAX_VERTICES];
vertexBuffer = new VertexBuffer(
graphics, typeof(VertexPositionColor), MAX_VERTICES, BufferUsage.WriteOnly);
}
~TreeScene() {
Dispose();
}
public void Dispose() {
vertexBuffer.Dispose();
GC.SuppressFinalize(this);
}
public struct Trapezoid {
public Vector2 p1, p2, p3, p4;
public void Rotate(float angle) {
p1 = p1.Rotate(angle);
p2 = p2.Rotate(angle);
p3 = p3.Rotate(angle);
p4 = p4.Rotate(angle);
}
public void Translate(Vector2 position) {
p1 = Vector2.Add(p1, position);
p2 = Vector2.Add(p2, position);
p3 = Vector2.Add(p3, position);
p4 = Vector2.Add(p4, position);
}
}
public class TreeNode {
// Ideal orientation, relative to its parent.
public readonly float Orientation;
// Orientation in world space.
public float WorldOrientation;
public readonly float Length;
public readonly float InWidth;
public readonly float OutWidth;
public readonly List<TreeNode> Children;
// Position of in-vertex in world space.
public Vector2 Position;
public TreeNode(float orientation, float length, float inWidth, float outWidth) :
this(orientation, length, inWidth, outWidth, new List<TreeNode>()) {
}
public TreeNode(float orientation, float length, float inWidth, float outWidth, TreeNode child) :
this(orientation, length, inWidth, outWidth, new List<TreeNode>() { child }) {
}
public TreeNode(float orientation, float length, float inWidth, float outWidth, TreeNode child1, TreeNode child2) :
this(orientation, length, inWidth, outWidth, new List<TreeNode>() { child1, child2 }) {
}
public TreeNode(float orientation, float length, float inWidth, float outWidth, TreeNode child1, TreeNode child2, TreeNode child3) :
this(orientation, length, inWidth, outWidth, new List<TreeNode>() { child1, child2, child3 }) {
}
public TreeNode(float orientation, float length, float inWidth, float outWidth, List<TreeNode> children) {
Orientation = orientation;
WorldOrientation = orientation;
Length = length;
InWidth = inWidth;
OutWidth = outWidth;
Children = children;
Position = Vector2.Zero;
}
}
public void Draw(bool isRunningSlowly, IWorld iworld, bool paused) {
var tree =
new TreeNode(0.0f, 100, 10, 6,
new TreeNode(0.0f, 100, 10, 6,
new TreeNode(-0.2f, 100, 10, 6,
new TreeNode(-0.3f, 100, 6, 4,
new TreeNode(-0.1f, 100, 6, 4,
new TreeNode(-0.3f, 150, 4, 2),
new TreeNode(0.2f, 200, 4, 2),
new TreeNode(0.5f, 100, 4, 2))),
new TreeNode(0.5f, 100, 6, 4,
new TreeNode(-0.1f, 100, 6, 4,
new TreeNode(-0.1f, 150, 4, 2),
new TreeNode(0.2f, 200, 4, 2))))));
graphics.Clear(backgroundColor);
var segments = new List<Trapezoid>();
LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
queue.AddLast(tree);
Debug.WriteLine("---------------------");
while (queue.Count > 0) {
TreeNode parent = queue.First.Value;
queue.RemoveFirst();
Vector2 outVector = new Vector2(0, parent.Length).Rotate(parent.WorldOrientation);
Vector2 outPosition = Vector2.Add(parent.Position, outVector);
outVector.Normalize();
Vector2 wind = new Vector2(1.0f, 0.0f);
float windAmount = Vector2.Dot(wind, outVector);
Debug.WriteLine("" + windAmount);
// We want a trapezoid with 4 points. A is the in position, B is the out position.
// The TreeNode.Length is the distance from A to B.
//
// We come up with the points relative to A being the origin, then rotate the trapezoid
// by its orientation, and translate the result to A's actual position.
//
// 3---B---4 <-- length = outWidth
// / | \
// / | \
// 1------A------2 <-- length = inWidth
// This fudge factor lengthens the sides a bit longer to prevent small discontinuities
// in the rendered result.
// TODO: remove this sideLengthFudge.
float sideLengthFudge = 1.05f;
Trapezoid t = new Trapezoid();
t.p1 = new Vector2(-parent.InWidth, 0);
t.p2 = new Vector2(parent.InWidth, 0);
t.p3 = new Vector2(-parent.OutWidth, parent.Length * sideLengthFudge);
t.p4 = new Vector2(parent.OutWidth, parent.Length * sideLengthFudge);
t.Rotate(parent.WorldOrientation);
t.Translate(parent.Position);
segments.Add(t);
foreach (TreeNode child in parent.Children) {
child.Position = outPosition;
float orientation = parent.WorldOrientation + child.Orientation;
child.WorldOrientation = orientation;
queue.AddLast(child);
}
}
Color color = Color.SaddleBrown;
for (int i = 0; i < segments.Count; i++) {
Trapezoid t = segments[i];
vertices[i * 6] = new VertexPositionColor(new Vector3(t.p1.X, t.p1.Y, 0), color);
vertices[i * 6 + 1] = new VertexPositionColor(new Vector3(t.p2.X, t.p2.Y, 0), color);
vertices[i * 6 + 2] = new VertexPositionColor(new Vector3(t.p3.X, t.p3.Y, 0), color);
vertices[i * 6 + 3] = new VertexPositionColor(new Vector3(t.p2.X, t.p2.Y, 0), color);
vertices[i * 6 + 4] = new VertexPositionColor(new Vector3(t.p3.X, t.p3.Y, 0), color);
vertices[i * 6 + 5] = new VertexPositionColor(new Vector3(t.p4.X, t.p4.Y, 0), color);
}
graphics.SetVertexBuffer(vertexBuffer);
vertexBuffer.SetData(vertices);
foreach (EffectPass pass in basicEffect.CurrentTechnique.Passes) {
pass.Apply();
graphics.DrawPrimitives(PrimitiveType.TriangleList, 0, segments.Count * 2);
}
}
}
}