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Abstract

We describe two sales strategies used by the MinneTAC
agent for the 2003 Supply Chain Management Trading
Agent Competition. Both strategies estimate, as the game
progresses, the probability of receiving a customer order for
different offer prices. Offers are made to maximize the ex-
pected profit margin on each order. The main difference be-
tween the strategies is in how they compute the probability
of receiving an order and the offer prices. The first strat-
egy works well in high-demand games, the second was de-
signed to improve performance in low-demand games. We
analyze empirically the effect of the discount given by sup-
pliers on orders received the first day of the game, and we
show that in high-demand games there is a correlation be-
tween the offers an agent receives from suppliers the first
day of the game and the agent’s performance in the game.

1. Introduction

Competitive scenarios are increasingly being used as
testbeds for the development of multiagent systems. A new
game, called TAC SCM, was introduced for the 2003 Trad-
ing Agent Competition [8]. This game involves a Supply
Chain Management (SCM) scenario in which agents at-
tempt to maximize profits by manufacturing personal com-
puters and selling them to customers.

The TAC SCM competition is interesting for many rea-
sons. Agents must base their decisions on limited informa-
tion about the state of the market and the strategies of other
agents. Agents must simultaneously compete in two sepa-
rate but interrelated markets: the market from which they
buy their supplies and the market to which they sell their
finished products. Agents have a large number of decisions
to make in a limited time, so the computational efficiency
of the decision-making process is important.

We describe two sales strategies used by our agent, Min-
neTAC, and analyze their performance in different games.
We show how the start-effect caused by the large discount
given by suppliers on orders made the first day, coupled with

the random order in which agent requests are considered, af-
fects the outcome of the game.

2. Overview of TAC SCM

Six autonomous agents compete to maximize profits in
a computer-assembly scenario. The simulation takes place
over 220 virtual days, each lasting fifteen seconds of real
time. Each agent has a bank account with an initial balance
of zero. The agent with the highest bank balance at the end
of the game wins. Agents earn money by selling comput-
ers they assemble out of parts purchased from suppliers.

To obtain parts, an agent must send aRequest For Quotes
(RFQ) to an appropriatesupplier. Each RFQ specifies a
component type, a quantity, and a due date. The next day,
the agent will receive a response to each request. Suppliers
respond by evaluating each RFQ to determine how many
components they can deliver on the requested due date and
how long it would take to produce all the components re-
quested, considering the outstanding orders they have com-
mitted to and the RFQs they have already responded to this
turn. If the supplier can produce the desired quantity on
time, it responds with an offer that contains the price of
the supplies. If not, the supplier responds with two offers:
(1) an earliest complete offer with a revised due date and
a price, and (2) a partial offer with a revised quantity and
a price. The agent can accept either of these alternative of-
fers, or reject both. Suppliers may deliver components late,
due to randomness in their production capacities. If the sup-
plier has excess capacity, the price will be discounted; dis-
counted prices may be as low as 50% of the base price.

Every day each agent receives a set of RFQs from po-
tentialcustomers. Each customer RFQ specifies the type of
computer requested, along with quantity, due date, reserve
price, and late penalty. Each agent may choose to bid on
some or all of the day’s RFQs. Customers accept the low-
est bid that is at or below their reserve price, and notify the
agent the following day. The agent must ship customer or-
ders on time, or pay a penalty for each day an order is late.
If a product is not shipped within five days of the due date
the order is cancelled, the agent receives no payment, and
no further penalties accrue.



3. A Priori Game Analysis

Prior to the competition, we analyzed the game to de-
termine its potential bottlenecks. Abottleneckon dayd is
the factor which limits the production of PCs on dayd. We
identified three types of bottlenecks: (1) ademand bottle-
neck, which happens if the demand for PCs is less than the
agents’ production capacities and the amount of available
supplies, (2) aproduction bottleneck, which happens if the
limiting factor is the agents’ production capacities, and (3)
a supply bottleneck, which happens when the limiting fac-
tor is the amount of available supplies.

To detect what bottlenecks might arise in a game, we
start by estimating the maximum potentially profitable pro-
duction of PCs on a day (which we callUsableProduction):

UsableProduction =
min(Demand × BidFraction,

ProductionCapacity,
SuppliesAvailable)

(1)

where

Demand = #RFQs × Quantity RFQ1 (2)

BidFraction is the proportion ofDemand which actually
receives bids. If the reserve price specified in the RFQ is
higher than the price of the components used to make the
PC, an agent can make a profit by bidding at or below the
reserve price, assuming it has production capacity and com-
ponents. Since customers’ reserve prices are chosen ran-
domly in the interval of 75% to 125% of the maximum
price of the components, approximately half of the RFQs
will specify reserve prices that are higher than the cost of
the components. Therefore, we can put a lower bound of
0.5 on BidFraction. Since components are often available
at a discounted rate if ordered ahead of time, in some games
BidFraction may be as high as 1.0.

ProductionCapacity is the maximum number of PCs
that can be produced daily by the agents:

ProductionCapacity = #Cycles×#Agents
AvgCycles

= 2000×6
5.5

= 2181
(3)

where #Cycles per day is 2000, and#Agents

is 6. AvgCycles is the average number of cycles
to build a PC, We compute it assuming that each
agent has sufficient supplies and that each of the
16 types of PCs is produced in equal quantities, as
AvgCycles =

∑16

i=1 Cyclesi/16 = 88/16 = 5.5. This re-
sults in ProductionCapacity = 2181. Since the num-
ber of cycles needed to build a PC is between 4 and 7, the
value ofProductionCapacity is in the range [1714, 3000].

1 the notationx denotes the sample mean of the variablex.

SuppliesAvailable is the number of PCs that can be built
from the supplies available in a day, assuming that sup-
pliers are producing at maximal capacity and components
in each category are produced with equal frequency. Ev-
ery PC requires four components. The supplier capacity
changes daily by a mean reverting random walk. For sim-
plicity, we assume the daily capacity is always equal to
NominalCapacity , the nominal capacity, which is speci-
fied as 500 components per day:

SuppliesAvailable = NominalCapacity/4 = 500/4 (4)

In a typical game, the initial average number of customer
RFQs per day is 200. We assume it is always 200, and we
assumeBidFraction = 0.5; that is, we assume that agents
are not able to obtain supplies at a discounted rate. We also
assumeQuantity RFQ = 10.5, since the average quan-
tity specified in each RFQ is chosen randomly from a uni-
form distribution over the interval[1, 20]. By substituting
these values into Equation 1 we obtain:

UsableProduction = min( 200 × 10.5 × 0.5,
2000
5.5

× 6,
∑8

i=1 500/4)
= min( 1050, 2181, 1000)
= 1000.

This result shows that the most likely bottleneck for a typ-
ical game is supply availability. In fact, the availabilityof
supplies is the most probable bottleneck as long as the num-
ber of RFQs per day is greater than 190. (If#RFQs = 190,
thenE[Demand ] × BidFraction = 190 × 10.5 × 0.5 =
997.5 < 1000.) In low demand games the number of RFQs
per day is typically less than 190, so the bottleneck could
be a demand bottleneck. However, if supplies are obtained
at a discount,BidFraction can be as high as 1, so to have
a demand bottleneck the number of RFQs per day has to
be less than 95 (If#RFQs = 95, thenE[Demand ] ×
BidFraction = 95 × 10.5 × 1 = 997.5 < 1000.)

Since the initial average number of customer RFQs is
chosen randomly from a uniform distribution over the range
[80, 320], approximately 45.8% of games will start off with
a demand bottleneck. In the above calculations we assumed
that BidFraction = 0.5. If agents get supplies at a dis-
counted price, then we expect thatBidFraction will be
greater than 0.5. The availability of supplies is then even
more likely to be a bottleneck. Competition experience in-
dicates that a substantial number of supplies were indeed
obtained for less than the maximum price. The above cal-
culations also suggest that agents’ production capacitiesare
not likely to be a bottleneck in any game in which there are
at least three functioning agents. However, a single agent
could be limited by its production capacity if it acquires
substantially more supplies than its opponents.



4. MinneTAC Sales Strategies

The analysis of the bottlenecks led us to decide to use
a supply-drivenstrategy. We designed, implemented, and
compared two variants of a supply-driven sales strategy, that
we callMaxEProfitandDemandDriven[6].

Each day the agent determines an offer price for each
RFQ. Offers are made only from the uncommitted finished
goods inventory and are sorted by decreasing profit margin,
whereProfitMargin = (price − cost)/price. The strate-
gies differ in the way they set prices and they estimate the
probability of receiving an order. For each RFQ on which
an offer is made, the agent reserves from its inventory a
fraction of the computers offered according to the estimated
probability of receiving an order,P(order), i.e.

QuantityReserved = RFQQuantity × P(order)

Both strategies commit existing inventory to offers, but dif-
fer in the way they set prices, and in the way they estimate
the probability of offer acceptance.

MaxEProfit determines an offer price that maximizes the
expected profit margin from an order:

E[ProfitMargin] = ProfitMargin × P(order)

with the constraint thatprice ≥ TargetAveragePrice.
ProfitMargin is calculated on the agent’s moving average
cost of the components.TargetAveragePrice is an inter-
nal parameter that reflects the current market prices. The
parameter is adjusted every 5-days based on the orders re-
ceived, and every 20-days based on the market report, time
left in the game, production rate, uncommitted finished
goods inventory level, and customer demand. This param-
eter helps to ensure that the agent is not left with winning
only unprofitable RFQs.

P(order) is the estimated probability of receiving a cus-
tomer order. MaxEProfit models this probability as a 6-
dimensionalOrderProb matrix with the following dimen-
sions: offer price, quantity, lead time, reserve price, penalty,
and product type. Each entry inOrderProb contains the
probability that a customer will accept an offer given the
values of the parameters. The values are updated during the
game whenever an offer is accepted or rejected. Initially the
values are all set to 1, making the agent overly optimistic,
and are adjusted during the game as follows:

OrderProb = (1 − α) × OrderProb + α × Success

whereα is the learning rate, andSuccess is either 1 (offer
accepted) or 0 (offer not accepted). The value forα we used
in the experiments is 0.2.

MaxEProfit attempts to learn a discrete regression
model. SinceP(order) is estimated from many parame-
ters, often there are not enough data until very well into

the game for the estimates to be accurate. This observa-
tion led us to design the DemandDriven strategy.

DemandDriven determines the offer price for a customer
RFQ based on a target probability of receiving an order,
TargetProb, which is computed from the reverse Cumu-
lative Density Function (CDF) that models the order proba-
bility. The objective is to make offers to sell out the inven-
tory by the end of the game.TargetProb is updated every
5-days based on currently observed market conditions (cus-
tomer demand and time left in the game) and on internal pa-
rameters (production rate and uncommitted finished goods
inventory for a specific product).

TargetProb =
min( 1,

AvailablePCs+DailyProduction×DaysLeft
EstimatedDemand

where AvailablePCs is the number of finished PCs
available in the inventory for a particular product.
DailyProduction is the number of units of the prod-
uct built each day,DaysLeft is the number of days left in
the game, andEstimatedDemand is an internal parame-
ter that forecasts future demand.

DemandDriven models the probability of a customer
order as a 5-dimensionalOrderProb matrix having the
following dimensions: offer price, customer demand, lead
time, reserve price, and product type. The values of cus-
tomer demand are discretized into 3 ranges: low, medium,
and high; lead time is discretized into short and long. The
matrix is pre-populated with values obtained from analy-
sis of several past games. DemandDriven assumes that only
a shift of the order probability curve could occur during the
game, so, instead of updating the values ofOrderProb as
done by MaxEProfit, every five days it shifts the values to-
ward higher or lower prices by a fixed percent depending
on the difference between the success rate of its offers and
TargetProb. The fixed percent change we use (which, in the
experiments, was 0.5%) causes, at times, the offer prices to
over react to the market changes. Overall the prices track
well the market.

5. Performance Analysis

Most games can be classified as either high or low cus-
tomer demand [3]. Table 2 compares the results of the two
strategies over a series of high-demand2 and low-demand
games3 all played on tac5.sics.se:8080. We can see that
MaxEProfit performs better in high-demand games, but is
generally worse in low-demand games.

2 2385,2393,2396,2401,2407,2409,2410,2411,2412,2416,
2419,2420,2421,2594,2597,2598,2603,2607,2612,2613

3 2383,2387,2390,2392,2394,2399,2415,2417,2423,2425,
2426,2492,2593,2595,2599,2600,2604,2610,2614,2640



Game Agents and their Result (in $M) Customer Demand in RFQs
Number 1 2 3 4 5 6 #RFQ #RFQ/day σ

2214 team2 RedSox MinneTAC arnoch RedAgent Eini21778 99.44 51.8
-10.43 -18.3 -31.06 -34.87 -38.08 -39.83

2218 Tabaluka RedAgent arnoch MinneTAC team2 Eini65626 299.66 42.14
31.23 30.69 23.24 20.8 8.86 7.89

Table 1. Summary of the games examined in this paper. #RFQ is the total number of RFQs during the game,
#RFQ/day is the average number of RFQs per day, andσ is the standard deviation. Customer RFQs are issued
over 219 days in a game. Eini and Tabaluka are variants of MinneTAC. Eini and MinneTAC use DemandDriven, Ta-
baluka uses MaxEProfit.
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Figure 1. Games 2214 and 2218 – Aggregate
demand curves for product 4 over the games.

High Low
Strategy Values (in $M)

Min Avg Max Min Avg Max
MaxEProfit (Tabaluka)-12.0212.3035.99-66.90-44.44-7.36
DemandDriven (Eini)-23.65 8.7030.89-57.15-34.4930.89

Table 2. Performance comparison of MaxE-
Profit and DemandDriven strategies in high
and low-demand games.

We compare our two strategies in a high and a low-
demand game (see Table 1), focusing our comparison on
product 4, whose nominal price (which is the sum of the
base cost of the four individual components) is $1850. Sim-
ilar results can be shown for the other products.

In Figure 1, we show the aggregate demand curve for
product 4 over the two games by price. The aggregate de-
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Figure 2. Game 2214 – Total number of RFQs.
This is a low-demand game.

mand curve for a high-demand game is very different from
the curve for a low-demand game. In the high-demand game
there is demand for computers at prices above the nominal
price, but in low-demand games, as the game in Figure 2,
the bulk of the demand is below the minimum reserve price,
which equals 75% of the nominal price.

5.1. Performance in high-demand games

We show now how MaxEProfit performs in a high-
demand game. In Figure 3 we show the market reports ev-
ery twenty days and compare them with the agent’s predic-
tions. Since predictions are updated every 5 days, we show
the agent predictions and the real prices over the same peri-
ods. In addition we show the average offers (circles) made
and the average orders (crosses) received.

In this game, the inventory of finished goods was mostly
empty until halfway through the game. When the inven-
tory is empty the sales strategy doesn’t make any offer and
consequently does not learn. This situation can be seen as
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report: Predicted vs actual values of MaxE-
Profit for product 4.
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Figure 4. Game 2218 – Offer and order prices
of MaxEProfit vs reserve price for product 4.

a straight line in Figure 3 for the predicted product price.
We observe that predicted product prices match well actual
product prices, even though the prediction often over- and
undershoots the real values.

Towards the end of the game this sales strategy tries to
sell out the uncommitted finished goods inventory if the fin-
ished goods inventory level is higher than what the agent
thinks it will be able to sell. We can see the relationship be-

0 20 40 60 80 100 120 140 160 180 200 220

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Time in Days

P
ro

du
ct

 P
ric

e 
in

 $

Average Prices for Product 4
 MinneTAC with DemandDrivenSalesMgr in tac5.sics.se:2218

Market Report Average Actual Product Price
Five Day Average Actual Product Price
Five Day Average Predicted Product Price
Average Offer Product Price
Average Order Product Price

Figure 5. Game 2218 – Timeline for market re-
port: Predicted vs actual values of Demand-
Driven for product 4.
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Figure 6. Game 2218 – Offer and order prices
of DemandDriven vs reserve price for prod-
uct 4.

tween offer/order prices and reserve prices in Figure 4. A
circle with a cross inside symbolizes an accepted order. We
observe that in this case the reserve and order prices are
close. This is not the case in every game.

We now analyze the performance of MinneTAC, which
uses the DemandDriven strategy, in the same game. Figure 5
shows the same information as Figure 3, but for Demand-
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Figure 7. Game 2214 – Timeline for market re-
port: Predicted vs actual values of Demand-
Driven for product 4.

Driven. We can see the relationship between offer/order
prices and reserve prices of MinneTAC in Figure 6. We ob-
serve that in this case the reserve and order prices are not as
close, as when using MaxEProfit in the same game (see Fig-
ure 4). The reason is that DemandDriven tries to clear the in-
ventory by the end of the game, and it is willing to make of-
fers far below the reserve price. DemandDriven is often too
aggressive in selling goods because it assumes that a con-
stant supply of raw material is being supplied until the end
of the game.

5.2. Performance in low-demand games

We will now analyze the performance of the Demand-
Driven strategy in low-demand games. MaxEProfit is not
discussed here, since the analysis is similar.

The first day the agent orders large amounts of compo-
nents. The sales strategy starts to make offers only when
there are finished goods in the inventory. Whenever fin-
ished goods are almost sold out, MinneTAC purchases new
components to retain a certain level of raw inventory. This
is problematic in very low-demand games, since the agent
ends up with too many components and finished goods in
the inventory.

In Figure 7 we can see the agent’s predictions versus the
market reports, and the orders and offers made through the
game. We can observe how well the prices offered tracked
the real market price. Offer and order prices decrease with
respect to the reserve prices as the game progresses (see
Figure 7). In a low-demand situation like this, the competi-
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Figure 8. Game 2214 – Prices (offer and or-
der) vs reserve price of DemandDriven for
product 4.
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Figure 9. Game 2214 – Probability of order for
different product types requested in a RFQ.

tion to sell out products is very high and therefore the prices
lower so much. In high-demand games the prices are usu-
ally between 75% and 125% of the nominal product price
(see Figures 4 and 6), while the bulk of the orders in this
low-demand game is far below 75% of the nominal prod-
uct price (see Figure 8). In Figure 9 we can see how low
the probability of order is for some products in a low de-
mand game.



Total Values (in $M) of
Agent ValueTimely OrdersDiscount Final DM

RFQs Offers Result (days)
Tabaluka 142.93 57.90118.48 59.24 31.23 73.57
RedAgent132.03 0.00 14.80 57.40 30.69 91.94
arnoch 79.00 7.97 42.24 21.12 23.24 92.40
MinneTAC142.93 28.31 95.46 47.73 20.80102.39
team2 2.00 0.00 2.00 1.00 8.86 51.35
Eini 142.93 21.18 72.27 36.13 7.89119.63

Table 3. Start-effect for Game 2218: Value
RFQs is the value of the components re-
quested the first day, Timely Offers is the
value of the components offered at the re-
quested time, Orders is the value of the com-
ponents ordered, and Discount is the dis-
count (50%) obtained. DM is the delay mea-
sure in days. Eini and MinneTAC use De-
mandDriven and Tabaluka uses MaxEProfit.

6. Analysis of Start-Effect

We will now analyze the start-effect in the game and
show that the total volume an agent orders on the first day
and the timeliness of the offers that it accepts have a strong
impact on that agent’s final score. We developed a start-
effect measure calleddelay measure(DM). DM (see Equa-
tion 6) is the delay, in days, in delivering the components
weighted by the component total value.

DM =

∑#RFQs

i=1 V alue(RFQi) × DueDate(RFQi)
∑#RFQs

i=1 V alue(RFQi)

where Value(RFQi ) is computed multiplying the com-
ponents base price by the quantity in the RFQ, and
DueDate(RFQi ) is the due date of the offer.

Results for game 2218 are shown in Table 3. The mea-
sure works very well for high-demand games, but not as
well for low-demand games. We can conclude that a low
value of DM leads to a better final score. Tabaluka had the
lowest DM and ended up first, Eini had the highest DM and
came in last. A low DM is an effective indicator only when
a high volume of goods is ordered on the first day. In this
game team2’s low DM is not a good indicator of its final re-
sult because of its low order volume on the first day.

In addition to looking at single games we looked at
many high-demand and low-demand games played at
the 2003 International Conference for Electronic Com-
merce (Pittsburgh, October 2003). The games make a
good test set because the configurations for each agent
didn’t change and the agents were robust. To deter-
mine if a game is high-demand or low-demand, we looked

at ratio =

∑
#ComputersOrdered

ActivePlayers
and selected the 20

games with the highest4 and lowest5 ratios. Then we cal-
culated the correlation coefficients between the bank
status at the end of the game, the volume of first day or-
ders, and DM.

In high-demand games we calculated a correlation coef-
ficient of 0.5381 between bank status and the total amount
ordered on the first day, and a correlation coefficient of -
.03456 between bank status and DM. This shows that in
high-demand games there is a strong relationship between
the amount of parts an agent orders on the first day and its fi-
nal score. There is also a strong relationship between DM
and the final score, perhaps because agents which received
better offers were more likely to accept them. This indicates
that the order in which suppliers process RFQs has a strong
impact on the outcome of high-demand games.

In low-demand games the correlation coefficient be-
tween bank status and the total amount ordered on the first
day was -0.3242 and the correlation coefficient between
bank status and DM was 0.3904. This indicates that agents
who did not order a lot of parts (perhaps because they re-
ceived poor offers on the first day) did better in low-demand
games, because they were less likely to be trapped with in-
ventory they could not sell at a profit.

7. Related Work

Predicting prices is an important part of the decision pro-
cess of agents. Our strategies have been inspired by the
work of Kephart et al. [5], who explored several dynamic
pricing algorithms for information goods, where shopbots
look for the best price, and pricebots try to adapt their prices
to attract business. Wellman [9] analyzed and developed
metrics for price prediction algorithms in the TAC Classic
game, similar to what we have done for TAC SCM.

Nearly all agents in last year’s competition used some
way of modeling the probability of receiving an order. Bot-
ticelli [1] uses a linear CDF to determine the relationship
between offer price and order probability. We use a reverse
CDF and take other factors into account, such as quantity
and due date.

TacTex [7] uses the lowest and highest offer price, which
are provided for each product every day by the game server,
and determines the probability of an order by linear inter-
polation. Their estimates depend only on the type of com-
puter requested and the reserve price, whereas we use more
parameters (6 for the MaxEProfit strategy and 5 for the De-
mandDriven strategy). RedAgent [4], the winner of last year

4 1641,1646,1650,1651,1652,1660,1661,1662,1663,1665,
1666,1667,1670,1673,1674,1682,1683,1685,1686,1690

5 1640,1642,1643,1644,1649,1653,1654,1657,1658,1659,
1668,1669,1671,1672,1676,1679,1680,1681,1687,1688



TAC SCM , uses an internal marketplace structure with
competing bidders to set offer prices. PackaTAC [2] lets
other agents set the price and tries to follow. The Jacka-
roo team [10] applied a game theoretic approach to set of-
fer prices, using a variation of the Cournot game for model-
ing the product market.

Since we estimated the bottleneck was going to be in the
supply and not in the production, we did not worry, as other
teams [1, 7], about optimizing the production of our agent.

8. Conclusions and Future Work

We analyzed the factors which can limit the performance
of an agent in TAC SCM. The limit to profitability is usually
either caused by limited supplier capacity (in high-demand
games) or, more rarely, by limited customer demand (in
low-demand games).

MinneTAC orders parts aggressively, assuming a sup-
plier capacity bottleneck. This works well in high-demand
games, but in low-demand games the agent ends up buy-
ing too many components and so it ends up having to sell
computers at a loss.

We have examined two different sales strategies, Max-
EProfit and DemandDriven, that take into account both a
supply bottleneck and a customer demand bottleneck. Both
sales strategies were competitive in high-demand games,
but often sold computers at lower margins compared to
other agents. Even though the DemandDriven strategy per-
forms better than the MaxEProfit strategy in low-demand
games often it is still unable to compensate for the large
number of parts ordered on the first day.

We have shown that the random order in which agent’s
RFQs are selected by suppliers and the huge discount on
components ordered the first day affect the outcome of the
game so much that for high-demand games the winner of
the game can be predicted from the first day replies of sup-
pliers. We have developed a measure of the delay in obtain-
ing supplies, and shown that the a low value of delay corre-
lates with good performance in high-demand games. How-
ever, in low-demand games a low delay correlates with bad
performance.

The TAC SCM rule-set have undergone significant
changes for the 2004 competition, which will affect some
parts of our analysis. Customer demand will be evened
out so that there will no longer be a clear distinction be-
tween high-demand and low-demand games. Changes to
supplier pricing rules will reduce the start-effect by mak-
ing it more difficult to acquire large quantities of cheap
supplies on the first day.

There are a number of areas where the strategy of our
agent can be improved, and we are in the process of ex-
ploring some of them. We are replacing the discrete regres-
sion model used by MaxEProfit with a continuous regres-

sion model, and we are developing more flexible procure-
ment and production managers.

The design of the MinneTAC agent [6], in which each
basic behavior is implemented in a separate, configurable
component with minimal and well defined dependencies on
other components, facilitates experimenting with different
strategies. This design allows each user to focus on a sin-
gle problem and work independently, and it allows multiple
user to tackle the same problem in different ways.
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