
Thresholded-Rewards Decision

Problems: Acting Effectively in Timed

Domains

Colin McMillen

CMU-CS-09-112

April 2, 2009

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Manuela Veloso, Chair

J. Andrew Bagnell
Stephen Smith

Michael Littman (Rutgers University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2009 Colin McMillen

This research was sponsored by Rockwell Scientific under grant number B4U528968, Department of the
Interior under grant number NBCH1040007, L3 Communication Integrated Systems, L.D., under grant
number 4500244745, SRI International under grant number 55-000691 and 03-000211, DARPA, Intelligent
Automations, Inc., under grant number 6541, Lockheed Martin Corporation under grant number 8100001629,
and U.S. Army Research Office under grant number DAAD-190210389. The views and conclusions contained
in this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Markov Decision Processes, Thresholded Rewards, Limited Time, Zero-Sum
Games, Robotics, Multi-Robot Systems, Multi-Agent Systems, Robot Soccer, Capture the
Flag, reCAPTCHA

Abstract

In timed, zero-sum games, winning against the opponent is more important than the final
score. A team that is losing near the end of the game may choose to play aggressively
to try to even the score before time runs out. In this thesis, we consider the problem of
finding optimal policies in stochastic domains with limited time, some notion of score, and
in complex environments, such as domains including opponents. This problem is relevant
to many intelligent decision making tasks, not just games, as nearly every decision made in
the real world depends on time. The work presented in this thesis has broad applications
to domains possessing the key features of control under uncertainty, limited time, and some
notion of score.

We introduce the concept of thresholded-rewards problems as a means to effectively reason
about acting in domains with limited time and with some notion of score, progress, or
intermediate reward. In a thresholded-rewards problem, the amount of true reward received is
determined at the end of the time horizon, by applying an arbitrary threshold function to the
amount of intermediate reward (e.g., score) accumulated during execution. We utilize Markov
decision processes (MDPs) and semi-Markov decision processes (SMDPs) to model domains
with stochastic actions. We introduce algorithms for finding optimal policies in MDPs and
SMDPs with thresholded rewards. We also introduce heuristics for finding approximately
optimal policies for thresholded-rewards MDPs. We analyze how a team should change
strategy in response to an opponent whose behavior is initially unknown but slowly reveals
itself during execution. We also introduce a sampling-based control algorithm that allows
for effective action in domains in which rewards are hidden from the agent.

We perform controlled experiments to evaluate our algorithms in three timed domains. Robot
soccer and Capture the Flag are timed, adversarial games in which two teams compete to
be ahead in score at the end of the game. We further extend our approach to address the
reCAPTCHA domain, in which we are given a set of words that need to be transcribed
before some time deadline. The control problem consists of maximizing the probability
that all the words have been transcribed before the deadline. Through our theoretical and
experimental results, we show that the algorithms presented in this thesis enable effective
action in stochastic domains with limited time and some notion of score.

3

4

Acknowledgements

I would like to thank my advisor, Manuela Veloso, for six years of guidance and support.
I am also grateful to my committee members, Stephen Smith, Drew Bagnell, and Michael
Littman, for their advice and suggestions.

I would also like to thank the many members of the robot soccer lab over the years, especially
Sonia Chernova, Doug Vail, Jim Bruce, and Paul Rybski. Your support as friends and
collaborators has kept me (mostly) sane through countless deadlines and competitions.

I am also indebted to all the teachers—from kindergarten through graduate school—who
have inspired me to learn for the last 23 years. In particular, I would like to thank Paul
Hetchler and Bob O’Hara, my high-school physics and biology teachers, who inspired me to
go into science; and Nikolaos Papanikolopoulos and Maria Gini, who got me started with
robotics research as an undergraduate.

I am thankful to have the love and support of my parents, Shaun and Roseann, and my
sister, Katie.

Finally, I am deeply indebted to my wife, Kristen, whose love, support, patience, and com-
panionship have helped me throughout the entire Ph.D. process—but especially in the last
few months, for encouraging me to push through to the end.

5

6

Table of Contents

1 Introduction 25

1.1 Approach . 27

1.2 Domains . 28

1.3 Contributions . 29

1.4 Reader’s Guide to the Thesis . 30

2 Domains 33

2.1 Robot Soccer . 34

2.1.1 Play-Based Teamwork in Robot Soccer 36

2.2 Capture the Flag . 39

2.2.1 Capture the Flag Domain Specification 40

2.2.2 Roles . 44

2.2.3 Plays . 48

2.3 reCAPTCHA . 50

7

2.4 Summary . 53

3 Thresholded-Rewards MDPs 55

3.1 Definition of a Thresholded-Rewards MDP 56

3.2 TRMDP Example . 58

3.3 TRMDP Conversion Algorithm . 59

3.4 TRMDP Solution Algorithm . 62

3.5 Results . 63

3.6 Summary . 65

4 Heuristics for TRMDPs 67

4.1 The Uniform-k Heuristic . 67

4.2 The Lazy-k Heuristic . 69

4.3 The Logarithmic-k-m Heuristic . 70

4.4 Results . 71

4.5 Summary . 74

5 TRMDPs with Arbitrary Reward Distributions 75

5.1 Definitions . 76

5.2 TRSMDP Optimal Solution Algorithm . 76

5.3 TRSMDPs Applied to the CTF Domain . 79

5.3.1 Finding Good CTF Plays . 80

8

5.3.2 CTF Time-To-Score Distributions . 82

5.3.3 CTF Optimal Policies . 87

5.3.4 Experimental Results . 90

5.4 TRSMDPs Applied to the Robot Soccer Domain 92

5.4.1 Experimental Domain . 92

5.4.2 Robot Soccer Time-To-Score Distributions 94

5.4.3 Robot Soccer Optimal Policy . 97

5.5 Comparison Between MDP and SMDP Approaches 98

5.6 Threshold-Plus-Linear Objective Function 101

5.7 Summary . 105

6 TRMDPs with Unknown Opponents 107

6.1 Incidental Behavior Recognition in Robot Soccer 108

6.1.1 Approach . 108

6.1.2 Experimental Setup . 109

6.1.3 Experimental Results . 115

6.1.4 Summary . 116

6.2 Acting in Response to an Unknown Opponent 117

6.2.1 Static Opponent . 118

6.2.2 Dynamic Opponent . 121

9

6.3 Summary . 123

7 TRMDPs with Unknown Rewards 127

7.1 reCAPTCHA Domain Model . 128

7.2 Background . 131

7.3 Sampling-Based Control Policy . 131

7.4 Results . 133

7.5 Summary . 137

8 Related Work 139

8.1 Markov Decision Processes . 139

8.2 Decision Problems with Alternative Objective Functions 141

8.3 Multi-Robot Teamwork . 143

8.4 Teamwork in Robot Soccer . 144

8.5 Strategic Decisions in American Football . 146

8.6 Summary . 147

9 Conclusion 149

9.1 Contributions . 149

9.2 Future Directions . 151

9.3 Concluding Remarks . 153

10

A Communication and Play-Based Role Assignment in the RoboCup Four-

Legged League 155

A.1 Communication Strategies . 155

A.1.1 Ball Messages . 156

A.1.2 Status Messages & Intentions . 157

A.1.3 Periodic Messages . 158

A.2 Distributed Play-Based Role Assignment . 158

A.2.1 Plays . 158

A.2.2 Play Selector . 160

A.2.3 Role Allocator . 161

A.2.4 Roles . 162

A.3 Experimental Results . 163

A.4 Conclusion . 165

B Capture the Flag Experiment Data 167

B.1 11-Play Preliminary Experiment Data . 167

B.2 Time-To-Score Distributions . 171

B.3 Optimal Policies . 184

11

12

List of Figures

2.1 A RoboCup four-legged league soccer match from 2005. 34

2.2 Definition of the Defensive play. 38

2.3 A screenshot of our Capture the Flag simulator. Each player is depicted as a

colored circle with a number written on it; the flags are depicted as colored

squares. 41

2.4 Positions taken by the defenders depending on the number of defenders on

the team. The opponents’ home zone is to the right. 49

2.5 A sample CAPTCHA, shown to a user as part of the account signup process

for creating a Google Mail (Gmail) account. 50

2.6 reCAPTCHA digitization example. 51

2.7 Outline of the reCAPTCHA system. 52

3.1 Example MDP M , inspired by robot soccer. 58

3.2 The MDP M ′ returned by Algorithm 3.2 given the MDP M (presented in

Figure 3.1) and h = 3. Lightly-shaded states have reward 1; darkly-shaded

states have reward -1; unshaded states have reward 0. Transition probabilities

for the balanced action are shown. 61

13

3.3 The optimal policy for M (shown in Figure 3.1), with time horizon h = 120

steps. 63

3.4 Effect of changing the opponent’s capabilities. 64

3.5 Performance of maximize-expected-rewards and thresholded-rewards on 5000

randomly generated MDPs. 65

4.1 The uniform-10 policy for M with time horizon h = 120 steps. Only the

policy decision times are shown; at all other time steps, the last decision is

maintained. 68

4.2 The lazy-30 policy for M with time horizon h = 120 steps. 70

4.3 The logarithmic-8-2 policy for M with time horizon h = 120 steps. Only the

policy decision times are shown; at all other time steps, the last decision is

maintained. 71

4.4 Performance of heuristic techniques on 60 randomly generated MDPs. Points

in the upper-left frontier of the graph represent Pareto-efficient tradeoffs be-

tween state space size and expected true reward. 72

4.5 The amount of expected value lost if an agent acts optimally except at a single

time step k, where k = 0 is the final time step. 73

5.1 Cumulative time-to-score distributions for (a) the blue team and (b) the red

team when the blue team plays A2 M1 D2, for each possible red play. 83

5.2 Cumulative time-to-score distributions for (a) the blue team and (b) the red

team when the blue team plays A2 M1 D2, for each possible red play. This

is the same data as Figure 5.1, with the y-axis zoomed in to highlight the

differences between plays. 84

14

5.3 Instantaneous time-to-score distributions for (a) the blue team and (b) the

red team when the blue team plays A2 M1 D2, for each possible red play. This

is the same data as Figure 5.2, but plotted as an (unnormalized) probability

mass function rather than as a cumulative distribution function. 84

5.4 Cumulative time-to-score distributions for (a) the blue team and (b) the red

team when the blue team plays A3 M1 D1, for each possible red play. 85

5.5 Instantaneous time-to-score distributions for (a) the blue team and (b) the

red team when the blue team plays A3 M1 D1, for each possible red play. This

is the same data as Figure 5.4, but plotted as an (unnormalized) probability

mass function rather than as a cumulative distribution function. 85

5.6 The optimal policy for the CTF domain, assuming that the opponent plays

A2 M1 D2 for the entire game. The y-axis shows the number of time steps re-

maining; the x-axis shows the cumulative intermediate reward (score difference). 88

5.7 The optimal policy for the CTF domain, assuming that the opponent plays

A3 M1 D1 for the entire game. The y-axis shows the number of time steps re-

maining; the x-axis shows the cumulative intermediate reward (score difference). 89

5.8 Regions covered by each role in each play. (a) RoboCup play. The defender’s

region is colored with dark dots; the supporter’s region is colored with diagonal

lines. The attacker’s region is the entire field. (b) SuperDefense play. The

rear defender’s region is colored with dark dots; the middle defender’s region

is colored with a light checkerboard pattern, and the front defender’s region

is colored with diagonal lines. 94

5.9 Histogram of the number of goals scored per game for the two conditions.

When our team uses the SuperDefense play, the opponents score signifi-

cantly fewer goals. 95

5.10 Histogram of time between opponent goals. When our team uses the Su-

perDefense play, the opponents take significantly longer to score goals. . . 96

15

5.11 The optimal policy for the robot soccer domain, assuming that the opponent

plays RoboCup for the entire game. The y-axis shows the number of time

steps remaining; the x-axis shows the cumulative intermediate reward (score

difference). 98

5.12 Optimal policies for the CTF domain, assuming that the opponent plays

A2 M1 D2 for the entire game. (a) Optimal policy generated by using an MDP

as the base model. (b) Optimal policy generated by using an SMDP as the

base model. 99

5.13 Optimal CTF policies against A2 M1 D2 with the threshold-plus-linear-k thresh-

old functions. 102

6.1 Sample log data collected by our robots when the opponents play the RoboCup

play. Each image in the left column shows the observations of a single robot

in the first minute of the game. Each image in the right column shows the

observations of a single robot over the entire 10-minute game. 111

6.2 Sample log data collected by our robots when the opponents play the Su-

perDefense play. Each image in the left column shows the observations of

a single robot in the first minute of the game. Each image in the right column

shows the observations of a single robot over the entire 10-minute game. . . . 112

6.3 Summary of classification accuracy when using different sets of features as

input to the HMM. 116

6.4 Classification accuracy at each timestep for a typical RoboCup game and a

typical SuperDefense game. 117

6.5 Results of playing against a dynamic opponent that switches between A1 M1 D3

and A2 M1 D2 at c random times throughout the game. The x-axis shows the

number of opponent play switches per game; the y-axis shows the empirically

measured value. 124

16

7.1 Histogram of per-user solution accuracy for 31,163 of the most active re-

CAPTCHA users. 129

7.2 MDP model of the reCAPTCHA domain. 130

7.3 Reward distribution for the reCAPTCHA domain. 130

7.4 Transition probabilities for the reCAPTCHA domain. 130

7.5 Value of the optimal policy and uniform-k for the reCAPTCHA domain, with

the time horizon h = 1000, values of k in {10, 20, 50, 100}, and thresholds

ranging from 500–1500. 134

7.6 Results when sampling using the Mean reward estimation function on the re-

CAPTCHA domain, with time horizon h = 1000, values of k in {1, 10, 20, 50, 100},
and thresholds ranging from 500–1500. The y-axis shows the proportion of

3,600 trials which were successes. The success rate of the maximize-expected-

rewards (“MER”) policy is also shown. 135

7.7 Results when sampling using the Low reward estimation function on the re-

CAPTCHA domain, with time horizon h = 1000, values of k in {1, 10, 20, 50, 100},
and thresholds ranging from 500–1500. The y-axis shows the proportion of

3,600 trials which were successes. 136

A.1 An example play with multiple applicability conditions. 160

A.2 Summary of the seven plays used by our team in RoboCup 2005. 160

A.3 Predicates used in the applicability conditions of plays. 161

A.4 Algorithm used by the play selector. 161

A.5 Initial position for each experimental trial. The three robots are placed in

three positions on the field, with the ball in the defense area. The experiment

proceeds until the robots advance the ball past the end line of the opposite

half of the field. 164

17

A.6 Experimental results for the Defender-Striker-Independent play, Defender-

Midfielder-Independent play, and switching between the two plays. The figure

shows the means and 90% confidence intervals for each case. 165

B.1 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A0 M1 D4, for each possible red play. 172

B.2 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A0 M1 D4, for each possible red play. This

figure presents the same data as Figure B.1, but the y-axis is zoomed in. . . 173

B.3 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A1 M1 D3, for each possible red play. 174

B.4 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A1 M1 D3, for each possible red play. This

figure presents the same data as Figure B.3, but the y-axis is zoomed in. . . 175

B.5 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A2 M1 D2, for each possible red play. 176

B.6 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A2 M1 D2, for each possible red play. This

figure presents the same data as Figure B.5, but the y-axis is zoomed in. . . 177

B.7 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A3 M1 D1, for each possible red play. 178

B.8 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A3 M1 D1, for each possible red play. This

figure presents the same data as Figure B.7, but the y-axis is zoomed in. . . 179

B.9 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A4 M1 D0, for each possible red play. 180

18

B.10 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A4 M1 D0, for each possible red play. This

figure presents the same data as Figure B.9, but the y-axis is zoomed in. . . 181

B.11 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A5 M0 D0, for each possible red play. 182

B.12 Time-to-score distributions for the blue team (top) and for the red team (bot-

tom) when the blue team plays A5 M0 D0, for each possible red play. This

figure presents the same data as Figure B.11, but the y-axis is zoomed in. . . 183

B.13 The optimal policy for the CTF domain, assuming that the opponent plays

A0 M1 D4 for the entire game. The y-axis shows the number of time steps re-

maining; the x-axis shows the cumulative intermediate reward (score difference).184

B.14 The optimal policy for the CTF domain, assuming that the opponent plays

A1 M1 D3 for the entire game. The y-axis shows the number of time steps re-

maining; the x-axis shows the cumulative intermediate reward (score difference).185

B.15 The optimal policy for the CTF domain, assuming that the opponent plays

A2 M1 D2 for the entire game. The y-axis shows the number of time steps re-

maining; the x-axis shows the cumulative intermediate reward (score difference).186

B.16 The optimal policy for the CTF domain, assuming that the opponent plays

A3 M1 D1 for the entire game. The y-axis shows the number of time steps re-

maining; the x-axis shows the cumulative intermediate reward (score difference).187

B.17 The optimal policy for the CTF domain, assuming that the opponent plays

A4 M1 D0 for the entire game. The y-axis shows the number of time steps re-

maining; the x-axis shows the cumulative intermediate reward (score difference).188

B.18 The optimal policy for the CTF domain, assuming that the opponent plays

A5 M0 D0 for the entire game. The y-axis shows the number of time steps re-

maining; the x-axis shows the cumulative intermediate reward (score difference).189

19

20

List of Tables

2.1 Summary of the roles used by our AIBO robot soccer team in RoboCup 2005. 37

2.2 Summary of the seven plays used by our AIBO robot soccer team in RoboCup

2005. 39

2.3 Summary of the low-level CTF actions available to each player. Some of the

low-level actions are only utilized by certain player roles. 43

5.1 Pareto-dominance analysis of two CTF plays: A0 M0 D5 and A0 M1 D4. 81

5.2 Pareto-dominance analysis of two CTF plays: A4 M0 D1 and A4 M1 D0. 82

5.3 Values of the optimal policies against each of the six possible opponents. These

values are computed theoretically, using Algorithm 5.1 to find the value of the

initial state. 90

5.4 Results of playing 3000 CTF games against each of the six possible opponents.

Each row shows the number of wins, losses, and ties achieved by our team,

and the measured value of playing the optimal policy. 91

5.5 Results of playing 3000 CTF games against each of the six possible opponents.

Each row shows the mean score per game for our team and the opponent

team, the mean score difference per game, and the theoretical score difference

predicted by the model. 91

21

5.6 Theoretically-computed values of the optimal policies against each of the six

possible opponents. 100

5.7 Results of playing 3000 CTF games against each of the six possible opponents.

Each row shows the number of wins, losses, and ties achieved by our team,

and the measured value of playing the optimal TRMDP and TRSMDP policies.100

5.8 Shows the theoretically-computed values of each policy against each opponent,

according to the zero-sum reward threshold function. Every entry in the table

is equal to P (winning)−P (losing) when the given policy is played against the

given opponent. 104

5.9 Shows the theoretically-computed score differences for each game which results

in a win for our team. Every entry in the table is equal to the mean score

difference when the given policy is played against the given opponent. 104

6.1 The best default play to choose in response to each opponent play for d = 1000,

and the expected value our team would achieve as measured by our experiments.119

6.2 The empirically measured value of using A2 M1 D2 as the default play against

each of the six opponents, for each value of the recognition delay d. 120

6.3 Difference between the empirically measured values of the known-opponent

case and using A2 M1 D2 as the default play against each of the six opponents,

for each value of the recognition delay d. 120

6.4 Results of playing against a dynamic opponent that switches between A1 M1 D3

and A2 M1 D2 at c random times throughout the game. Each row of the table

shows the number of wins, losses, and ties achieved by our team for each value

of c, and the empirically measured value of each condition. 122

6.5 Results of playing against a dynamic opponent that switches between A1 M1 D3

and A2 M1 D2 at c random times throughout the game. Each row of the table

shows the number of wins, losses, and ties achieved by our team for each value

of c, and the empirically measured value of each condition. 123

22

List of Algorithms

2.1 Effects of a MoveAction in the CTF domain. 45

2.2 Effects of a StayAction in the CTF domain. 45

2.3 Effects of a PickupAction in the CTF domain. 46

2.4 Effects of a TagAction in the CTF domain. 46

2.5 Behavior of the CTF Attacker role. 47

2.6 Behavior of the CTF Defender role. 48

2.7 Behavior of the CTF Midfielder role. 48

3.1 Dynamics of a thresholded-rewards MDP. 57

3.2 Converts a TRMDP (M, f, h) into an minimal MDP M ′ suitable for finding

the optimal thresholded-rewards policy. 60

5.1 Computes the value of a given state of a TRSMDP. 77

5.2 Computes the optimal policy for every state of a TRSMDP. 79

6.1 Play-Recognition algorithm. 113

6.2 Cross-validation procedure. 114

7.1 Sampling-based control policy. 132

23

24

Chapter 1

Introduction

In timed, zero-sum games (such as soccer, basketball, American football, ice hockey, and
most other team sports), winning against the opponent is what matters, regardless of the
magnitude of the final score. Intuitively, it seems that a team which is losing near the end of
the game should play aggressively, trying to even the score before time runs out. Such a team
can be said to be risk-taking: willing to trade expected reward for a higher probability of
winning (or at least tying) the game. Conversely, a team which is winning near the end of the
game may want to play a risk-averse strategy, playing defensively to prevent the opponent
from scoring. These sorts of strategies, which depend on score and time remaining, have
been used widely in human sports.

I have worked on robot soccer since the fall of 2003, as part of the CMPack and CMDash
entries to the RoboCup four-legged league. My particular focus has always been multi-robot
communication, collaboration, and teamwork. Early on, I found that the strategies chosen
by RoboCup teams were lacking one of the fundamental components commonly adopted by
human strategists: reasoning about score and time. A robot playing in the first minute of
a soccer match would behave exactly the same as a robot playing in the final minute of a
soccer match.

In the RoboCup 2005 international competition, we introduced the first AIBO robot soccer
team that autonomously changed strategy depending on the score of the game and the
time remaining. We developed a distributed, play-based approach which allows our team to
dynamically allocate team members to more defensive or more offensive roles as the game
progresses [37–39]. With this approach, we used hand-coded applicability conditions to cause
the team to act more aggressively or more defensively depending on the score and time. For
example, for an aggressive play that assigns many robots to attacking roles, we might have

25

an applicability condition like “This play is applicable when our team is losing and there is
less than one minute remaining in the game.” The main motivation for this thesis was the
desire to eliminate these hand-coded rules and instead find an algorithm that derives policies
for optimal play selection in timed, zero-sum domains such as robot soccer. The key insight
is that teams in timed, zero-sum games need to maximize the probability of winning: being
ahead in score when time runs out.

From this initial motivation, we came to understand that this problem is relevant to many
intelligent decision making tasks, not just games: nearly every decision made daily by peo-
ple in the real world depends on time. These time-dependent decisions are also rooted in
uncertainty. However, people generally have some idea of the progress they are making
toward their long-term goals. The work presented in this thesis therefore has broad appli-
cations beyond robot soccer; there are many real-world domains possessing the key features
of uncertainty, limited time, and some notion of score.

Some related domains (not explicitly addressed in this thesis) include election campaign-
ing and retirement planning. In election campaigning, political adversaries compete to be
“ahead” (supported by a majority or plurality of voters) when time runs out (on election
day). During the campaign season, the candidates can see their current “score” (e.g., as
measured by opinion polls) and take actions to improve their score, including advocating
certain policies and giving speeches in specific locations. In election campaigns, we see that
candidates’ strategies change significantly depending on their current score and time remain-
ing. In retirement planning, people often have goals such as “I would like to maximize my
probability of having k dollars saved by the time I am h years old.” Here we again have
a notion of “score” (current number of dollars saved) and a time deadline. In retirement
planning, we see that investors’ strategies change significantly based on the proximity of
the time horizon. Typically, young investors invest the majority of their savings in stocks
with a high expected value, while older investors will tend to invest more in bonds, which
have a lower expected value than stocks but also lower variance, and therefore offer more
predictable returns over a short time horizon.

The principal question addressed in this thesis is:

In stochastic domains with limited time, some notion of score, and
possibly in the presence of adversaries, how can agents or teams act
optimally, so as to maximize the probability of achieving their goals
before the time deadline expires?

Researchers in the operations research and game theory communities have previously ad-
dressed the problem of acting to maximize the probability of winning in time-limited, zero-

26

sum games (e.g., [26, 59]). However, reasoning about time and score has not generally been
addressed in rich real-world domains, such as robotic domains. In rich domains, it is easier
to maximize score instead of maximizing the probability of winning: both from a com-
putational complexity standpoint, and from the standpoint of implementation complexity
(needing to write additional code). Through the work presented in this thesis, we aim to
understand what can be gained by reasoning about score and time in such domains. We
argue that there are significant gains that can be achieved by maximizing the probability
of winning rather than maximizing expected score, and that these gains can be achieved
with a tractable computational cost. Furthermore, we aim to reduce the implementation
complexity of reasoning about score and time, by providing algorithms which automatically
convert a score-maximizing model into an expanded model that includes score and time and
explicitly maximizes the probability of winning.

In this thesis, we evaluate our algorithms in three timed domains. Robot soccer and Capture
the Flag (CTF) are timed, adversarial games in which two teams compete to be ahead in
score at the end of the game. In the reCAPTCHA domain, there is no adversary—we are
given a set of w words that need to be transcribed before some time deadline, and need to
maximize the probability that all w words have been transcribed before the deadline. These
domains are described fully in Chapter 2. Below, we discuss the general domain features
that are illustrated by our choice of these three domains.

1.1 Approach

The thesis question implicitly poses a control problem: given a stochastic domain with a
fixed, finite time horizon, and some notion of score, we aim to find the optimal policy that
maximizes the probability of achieving a specified amount of score before the time deadline
expires. We assume that the useful state features for deriving the optimal policy are at a
high level, such as the score of the game, the time remaining, and other domain features
that have been significantly abstracted. We assume that these high-level features are known
with near-certainty and that the state of the world is effectively fully observable.

In stochastic domains with full observability, Markov decision processes (MDPs) are a pow-
erful tool for computing optimal policies. Therefore, MDPs are the basic building block
on which we build most of the work presented in this thesis. Given a base MDP describ-
ing the stationary dynamics underlying a domain, we provide an algorithm that transforms
this MDP into a thresholded-rewards MDP (TRMDP): an expanded MDP that explicitly
represents score and time. In this expanded MDP, the amount of true reward received is
determined by applying an arbitrary threshold function to the amount of intermediate re-

27

ward (i.e., score) accumulated during execution. We present an efficient algorithm that finds
the optimal policy for this expanded MDP. Running this algorithm produces the optimal
policy for the associated thresholded-rewards problem. In general, the resulting policy is
non-stationary: the policy depends on the underlying state of the system as well as the
current score and the amount of time remaining.

With MDPs, each action takes a fixed amount of time to execute. In this thesis, we also
consider domains in which actions are temporally extended, requiring multiple time steps to
complete. We therefore augment our models with semi-Markov actions, thereby introducing
thresholded-rewards semi-MDPs (TRSMDPs). In further work, we consider the ramifications
of playing against an opponent whose behavior is unknown to us a priori, and of acting in
a domain in which the rewards are unknown at runtime. In each case, we introduce further
extensions to our TRMDP algorithms which enable solutions to these additional challenges.

1.2 Domains

There are several general features shared by all three of the specific domains used in our
empirical evaluation. The work presented in this thesis applies to domains possessing the
following characteristics:

• Finite time. This thesis addresses domains in which there is a finite amount of time
available. In domains with finite time, goals must be achieved before the time deadline
expires.

• Score. Scores are intermediate rewards that represent progress made toward the final
goal. In games like robot soccer and Capture the Flag, the scores are obvious: we get
+1 reward every time we score and −1 reward every time the opponent scores. In the
reCAPTCHA domain, we get one point of reward every time a word is successfully
transcribed.

• Thresholded rewards. In domains with thresholded rewards, true reward is received
only when the time horizon expires. When the time horizon expires, the amount
of reward received is determined by applying an arbitrary threshold function to the
amount of score (intermediate reward) received during execution.

• Stochastic actions. The effects of actions are uncertain; our algorithms therefore
need to account for stochastic actions.

28

• Full observability. We assume that the useful state features for deriving the optimal
policy are at a high level, such as the score of the game, the time remaining, and
other domain features that have been significantly abstracted. We assume that these
high-level features are known with near-certainty and that the state of the world is
effectively fully observable. Our previous experience with RoboCup indicates that this
assumption is justified.

In addition to the common features described above, each of the domains we study have
additional features which create further challenges. Robot soccer and CTF are adversar-
ial domains in which there are opponents that also manipulate the environment. In such
domains, the optimal policy needs to take the behavior of the opponent into account. We
initially assume that the behavior of the opponents is fully observable and known a priori;
however, in Chapter 6, we relax this assumption, assuming instead that we have some means
of recognizing the opponent’s behavior online. Robot soccer and CTF are also have teams
of individual agents working together. In this thesis, we treat a team as a single unit. Each
action taken by a team corresponds to choosing a play: a team strategy that assigns roles to
each team member. A role is a top-level behavior for a single agent.

Even though there are no opponents in the reCAPTCHA domain, reCAPTCHA still pos-
sesses the key features of score and time, and so the algorithms introduced in this thesis still
apply to the reCAPTCHA domain. The reCAPTCHA domain has the additional challenge
of unknown rewards: we are unable to observe the rewards received at execution time.
Since the optimal policy for thresholded-rewards domains generally depends on the score,
unknown rewards pose a significant challenge.

We present extensive descriptions of the robot soccer, CTF, and reCAPTCHA domains in
Chapter 2.

1.3 Contributions

Concretely, the major contributions of this thesis are the following:

• The formal definition of thresholded-rewards problems as a means to analyze the trade-
offs between maximizing score and maximizing the true objective function (e.g., the
probability of winning), in domains with limited time and some notion of score,
progress, or intermediate reward.

29

• An algorithm which takes in a threshold function and a base MDP describing the
stationary dynamics of a domain, and finds the optimal policy which maximizes the
expected value of the given threshold function.

• Multiple heuristic approximation techniques for finding approximately optimal policies
for thresholded-rewards MDPs.

• An exact algorithm for solving thresholded-rewards SMDPs, which accurately model
domains in which actions are temporally extended or in which the amount of time
taken to achieve a reward is drawn from an arbitrary distribution.

• The introduction of incidental behavior recognition as an interesting problem arising in
domains with limited time and in which observations of the environment are received
incidentally while a team is engaged in some other primary task.

• An analysis of how a team should change strategy in response to an opponent whose
behavior is initially unknown but slowly reveals itself during execution.

• A sampling-based control algorithm that allows for effective action in domains in which
rewards are hidden from the agent.

• Application and evaluation of these techniques to three different timed, finite-horizon
domains, including experiments performed with our real robot soccer team.

1.4 Reader’s Guide to the Thesis

The thesis is organized as follows:

• Chapter 2 summarizes the three experimental domains that are used throughout the
thesis: robot soccer, Capture the Flag, and reCAPTCHA.

• Chapter 3 introduces thresholded-rewards MDPs (TRMDPs). We present an algo-
rithm that efficiently computes the optimal policy for a TRMDP.

• Chapter 4 introduces three heuristic techniques that allow us to derive approximate
solutions to TRMDPs. We empirically measure the performance of these heuristics on
some sample problems.

• Chapter 5 introduces thresholded-rewards semi-MDPs (TRSMDPs), which allow us
to model domains in which the time needed for a state transition follows any arbitrary
distribution.

30

• Chapter 6 relaxes our previous assumption that the behavior of the opponent is
known to us a priori. We assume instead that we have some means of recognizing
the opponent’s behavior online. This allows our team to change strategy based on the
recognized behavior of the opponent.

• Chapter 7 extends TRMDPs to domains with unknown rewards. In this chapter, we
provide a sampling-based control algorithm which assumes that our agent occasionally
receives samples of the reward received.

• Chapter 8 discusses lines of related research, including MDPs and semi-MDPs, deci-
sion problems with alternative objective functions, multi-robot teamwork, and previous
approaches to team strategy in the robot soccer domain.

• Chapter 9 summarizes our major findings and suggests potential lines of future re-
search.

• Appendix A provides details on the communication strategies and the play-based
role assignment algorithms used by our AIBO robot soccer team during the 2004–2008
RoboCup competitions.

• Appendix B presents the full results of our experiments in the Capture the Flag
domain.

31

32

Chapter 2

Domains

In this chapter, we describe the three experimental domains that are used throughout this
thesis: robot soccer, Capture the Flag, and reCAPTCHA. These domains all feature a hard
time deadline, some notion of score, and an overall goal of attaining a certain score threshold
by the end of the time horizon.

In robot soccer, two teams of robots play a twenty-minute game of soccer; the goal is to be
ahead in score when time runs out. Robot soccer is the domain which originally inspired this
thesis: I have been involved with CMU’s CMPack and CMDash robot soccer teams since
2003, particularly focusing on teamwork and multi-robot coordination. Robot soccer is a
challenging domain for many reasons, including: highly stochastic actions, limited and noisy
perception of the environment, distributed teams (requiring the use of wireless networking
for communication and coordination), and the presence of adversaries in the environment.
We have addressed many of these challenges in earlier work [37–39,75], but the primary focus
of this dissertation is on the adversaries: how can we act so as to maximize the probability
of beating the opponent? Section 2.1 describes the robot soccer domain in detail.

Capture the Flag (CTF) is another timed, zero-sum game in which the goal is to be ahead
of the opponent when the game is over. In CTF, each team possesses a flag and attempts
to capture the opponents’ flag while simultaneously defending its own flag from capture by
the opponents. We have developed a grid-world CTF simulation that eliminates many of
the complexities of robot soccer, such as highly stochastic actions, partial observability, and
the need for communication. By eliminating these complexities, we can focus solely on the
challenges that are most relevant to this thesis: finding team strategies that aim to win
against the opposing team. Section 2.2 describes the CTF domain in detail.

33

Figure 2.1: A RoboCup four-legged league soccer match from 2005.

reCAPTCHA is a human computation project that digitizes books by enlisting humans to
read words that are difficult for OCR algorithms to read. In the reCAPTCHA domain, we
are given a document that needs to be digitized by some time deadline, and need to act so
as to maximize the probability that the document is fully digitized by the deadline. Unlike
robot soccer and CTF, reCAPTCHA is not an adversarial domain; there is no opponent
we are trying to defeat. However, there is still a notion of “score” (the number of words
successfully digitized so far) and time, and the overall goal is to attain a certain score
threshold (successfully digitizing every word in the document) by the deadline. An additional
challenge in the reCAPTCHA domain is unknown rewards. Since reCAPTCHA does not
know whether a human’s answer for a word is correct or not, rewards are hidden from the
agent at execution time. Section 2.3 describes the reCAPTCHA domain in detail.

2.1 Robot Soccer

Since 2003, I have worked on multi-robot coordination as part of the CMPack and CMDash
entries to the RoboCup four-legged league [75]. In this domain, two teams of Sony AIBO
robots play each other in a game of soccer [24, 25]. The general features of the domain are
as follows:

• Each team has four robots: typically, three field players and a goalkeeper. (In 2008,

34

the team size was expanded to five robots.)

• A game consists of two ten-minute-long halves.

• The field’s size has ranged from 4.2m × 2.7m (in 2004) to 6m × 4m (in 2005–2007) to
7.5m × 5m (in 2008).

The exact rules of the game and the setup of the environment are changed every year in order
to create new research challenges. The complete rules of the RoboCup four-legged league for
the 2004–2008 seasons are available online [52–56]. Throughout this thesis, whenever robot
soccer experiments are described, we will refer to the specific set of rules that were utilized in
the experiment. Figure 2.1 shows a snapshot of a RoboCup four-legged league soccer match
from 2005.

There are many features of the RoboCup domain that make it a rich and challenging testbed
for multi-robot team coordination. These features include:

• Full autonomy: each team of robots operates completely without human supervision.
However, teams are allowed to change the robots’ programming at halftime or during
a timeout. Each team is granted one timeout per game.

• Distributed teams: all perception, computation, and action is done on-board the
robots. The robots are equipped with 802.11b wireless networking, which enables com-
munication among team members; however, the robots are not allowed to communicate
with any off-board computers.

• Limited perception: each robot’s primary sensor is a low-resolution camera (208 ×
160 pixels) with a very narrow field of view (under 60 degrees). A single robot therefore
has a very limited view of the world, so teams can benefit greatly from communication
strategies that build a shared world model.

• Dynamic, adversarial environment: the presence of adversaries in the environ-
ment is a significant challenge. Opponents ensure that the environment is extremely
dynamic: within a few seconds, the state of the world may change significantly.

• Temporal constraints: there are two temporal constraints that arise due to the
presence of adversaries. First, all team decisions must occur in real time. A team
that takes too long to coordinate will have robots that display hesitation in carrying
out its tasks, which gives the opponents a significant advantage. Second, soccer is a
finite-horizon zero-sum game. A game of soccer has a winning team, a losing team,
and a defined ending point. Playing a conservative strategy—which might work well

35

over a long period of time—is of no use to a team that is losing and only has a few
seconds remaining in the game. A team in this situation must choose a strategy that
can score a goal quickly, even if such a strategy has other weaknesses. Multiple team
coordination strategies are needed.

• High network latency: the presence of dozens of robots in the competition environ-
ment leads to very unpredictable quality of the robots’ wireless network. Teams may
experience periods of high network latency and collisions; latencies of over a second
have been observed. To achieve consistent performance, a team needs to ensure that
the coordination strategies employed are robust to disruptions in communication.

2.1.1 Play-Based Teamwork in Robot Soccer

In general, multi-agent teamwork consists of a team control policy, i.e., a selection of a joint
action by teammates given a perceived state of the environment [47,70]. It is our experience
that it is rather challenging to generate or learn a team control policy in complex, highly
dynamic (in particular adversarial), multi-robot domains. Therefore, instead of approaching
teamwork in terms of a mapping between state and joint actions, we follow a play-based
approach, as introduced by Bowling et al. [5,6,8]. Plays allow a team of robots to discretely
change their strategy depending on the state of the game. The inspiration for this thesis is
the desire for optimal play selection in a robot soccer team, where the optimal play choice
(at any point in time) is that which is most likely to lead to a victory.

In [37], we empirically show the need for switching between two different ways of handling
a simple robot soccer scenario, depending on the behavior of an opponent robot. We argue
that the use of high-level coordination strategies is most appropriate for the RoboCup four-
legged league, due to the distributed, dynamic, adversarial environment and the presence of
high network latency.

Encouraged by this initial result, we pursued a play-based coordination strategy for the 2005
RoboCup international competition [38,39]. A play is a team plan that provides a set of roles,
which are assigned to the robots upon initiation of the play. Each role is a top-level individual
behavior, such as Defender, Midfielder, or Striker, that directs the actions of a single robot.
Table 2.1 summarizes the roles used by our team in the 2005 competition. Bowling et al. [5]
introduced a play-based method for team coordination in the RoboCup small-size league.
However, the small-size league has centralized control of the robots. We have extended
this work by introducing a distributed, play-based approach to teamwork [38,39]. Our play
system is the first known implementation of play-based teamwork in a distributed team of
robots. This play-based approach allows our team to handle the various challenges of the

36

Role Region Brief Description

Goalkeeper In front of the goal Blocks opponent shots on goal and
clears the ball.

Independent Entire field Chases the ball anywhere on the
field and attempts to score goals.

Defender Defensive half of the field Clears the ball and harasses oppos-
ing attackers.

Striker Offensive half of the field Plays in the front half of the field
and attempts to score goals.

Midfielder Near the midfield line Behaves like a Defender but covers
an area further forward.

LeftFlanker Left side of the field Runs the entire length of the field
to defend or attack, but remains on
only the left half of the field.

RightFlanker Right side of the field Runs the entire length of the field
to defend or attack, but remains on
only the right half of the field.

MidfieldDefender Midfield and defensive half Behaves like a defender but cov-
ers the entire defensive half and the
area near midfield.

KickoffStriker Near the center circle Special role used to perform a kick-
off.

KickoffCharger On the midfield line Special role used to follow up on a
kickoff.

Table 2.1: Summary of the roles used by our AIBO robot soccer team in RoboCup 2005.

RoboCup domain listed above. Full details of our play-based approach are presented in
Appendix A; in this section, we only discuss the features directly relevant to our focus on
high-level team strategies.

Multiple plays allow us to capture different teamwork strategies, as explicit responses to
different types of opponents. Plays also allow the team to reason about the zero-sum, finite-
horizon aspects of the RoboCup domain: the team can change plays as a function of the
score and time left in the game.

We have designed a language for specifying plays, which is inspired by the work of Bowling
et al. Our language allows us to define applicability conditions, which denote when a play
is suitable for execution and which roles should be assigned to the robots. Since robots

37

PLAY Defensive

APPLICABLE fewerPlayers

APPLICABLE secondHalf winningBy2OrMoreGoals

ROLES 1 Goalkeeper

ROLES 2 Goalkeeper Defender

ROLES 3 Goalkeeper Defender Independent

ROLES 4 Goalkeeper Defender Midfielder Independent

Figure 2.2: Definition of the Defensive play.

occasionally crash, and are temporarily removed from play due to committing fouls, each
play also specifies which roles to assign in the event that the team is not playing at full
strength.

Applicability. An applicability condition denotes when a play is suitable for execution.
Each applicability condition is a conjunction of binary predicates. A play may specify
multiple applicability conditions; in this case, the play is considered executable if any
of the separate applicability conditions are satisfied.

Roles. Each play specifies which roles should be assigned to a team with a variable number
of robots by defining different ROLES directives. A directive applies when a team has k
active robots, and specifies the corresponding k roles to be assigned. If a robot team
has n members, each play has a maximum of n ROLES directives. Since our AIBO team
is composed of four robots, our plays have four ROLES directives.

Unlike the work of Bowling, we do not have DONE or TIMEOUT keywords that specify when
a play is complete. Rather, a play is considered to be complete as soon as the play selector
chooses a different play, which may happen because the current play’s applicability conditions
are no longer met or because the team has determined that some other play is preferable.

Figure 2.2 shows an example of a defensive play. Its applicability conditions specify that
this play is applicable 1) when our team has fewer active players than the opponents or 2)
when the game is in the second half and our team is winning by at least two points. If all
four of our robots are active, Defensive assigns the roles Goalkeeper, Defender, Midfielder,
and Independent; if only three robots are active, Defensive assigns the roles Goalkeeper,
Defender, and Independent; and so on. Table 2.2 summarizes the seven plays used by our
team in the 2005 competition.

A play selector algorithm runs continuously on one robot that is arbitrarily chosen to be

38

Play Roles assigned

Default Goalkeeper Defender Striker Independent

Defensive Goalkeeper Defender Midfielder Independent

Guard Goalkeeper Defender MidfieldDefender Independent

Flankers Goalkeeper Defender LeftFlanker RightFlanker

Aggressive Goalkeeper LeftFlanker RightFlanker Independent

PullGoalie Midfielder LeftFlanker RightFlanker Independent

Kickoff Goalkeeper Defender KickoffCharger KickoffStriker

Table 2.2: Summary of the seven plays used by our AIBO robot soccer team in RoboCup
2005.

the leader. The play selector chooses which play the team should be running. The leader
periodically broadcasts the current play to its teammates, who set their roles (top-level
behaviors) based on what the play specifies. In our initial approach [39], each play had an
associated weight value, and the play selector would always choose the highest-weight play
from the set of applicable plays. This allowed us to hand-code a strategy that depended
on score and time, by utilizing score-based and time-based predicates (such as secondHalf

and winningBy2OrMoreGoals) and setting play weights appropriately. This hand-coded
approach was successful in the RoboCup 2005 international competition. However, all the
reasoning about time and score was manually hand-coded into the plays. Instead, we would
like the team to reason optimally about play selections, selecting the plays which are most
likely to lead to a win. The work presented in this thesis aims to effectively address the
problem of optimal play selection in domains such as robot soccer.

2.2 Capture the Flag

Capture the Flag (CTF) is a traditional game, played by two teams, in which each team
possesses a flag, and attempts to capture the opponents’ flag while simultaneously defending
its own flag from capture by the opponents. Each time a flag is successfully captured, the
capturing team scores a point. Like robot soccer, CTF is interesting to us because it is
a timed, adversarial domain: the overall goal of each team is to be ahead in score when
the game ends, after a given period of time has elapsed. AI researchers have studied CTF
in many contexts, including video games and mixed human/robot teams [82]. There is no
canonical version of the CTF domain. We have written our own multi-agent CTF simulator;
we utilize this simulator for all the CTF experiments presented in this document. The source

39

code for our simulator is available online [36]. In Section 2.2.1, we discuss the specification
of the CTF domain; in Sections 2.2.2 and 2.2.3, we discuss the roles (top-level single-agent
behaviors) available to each player and the plays (high-level team policies) available to each
team.

2.2.1 Capture the Flag Domain Specification

A game of Capture the Flag takes place in a grid world m × n squares in size. There are
two teams, Blue and Red, each consisting of the same number of players. The world is split
into two halves, also known as home zones. Blue’s home zone is on the left side of the world;
Red’s home zone is on the right. At the beginning of the game, each team’s flag starts at
a fixed location in its home zone; the players are initially positioned at random locations
within their home zone. To score a point for its team, a player must move into the opposing
home zone, pick up the opponents’ flag, and capture the flag by carrying it back to its own
home zone. To defend the flag, players can tag any nearby opponent that has entered the
defenders’ home zone. A player that has been successfully tagged is immediately teleported
to the very back of its own home zone. Other than this loss of position, there is no additional
penalty for being tagged. A CTF game lasts a fixed number of time steps. At the end of the
game, whichever team has accumulated the most points (that is, successfully captured the
opponent’s flag the most times) is declared the winner. If both teams have the same number
of points, the game ends in a draw.

In the experiments presented in this thesis, we use a 72 × 48 world, five players per team,
and a time horizon of 2000 time steps. All of these constants were chosen such that the CTF
game has roughly similar characteristics to (human or robot) soccer games. The world size
is proportional to the 6m × 4m robot soccer field, and the choice of time horizon means
that the average final score for each team is similar to soccer, with each side usually scoring
approximately 0–5 points in a game. The choice of five players per team gives teams enough
players to allow a variety of different team-level strategies to be employed. Five players is
also small enough that the effect of changing a single player’s role can lead to a significant
difference in the overall outcome.

Figure 2.3 shows a screenshot of our Capture the Flag simulator (scaled down to half the
usual size: 32 × 24). Each player is depicted as a colored circle with a number written on
it; the flags are depicted as colored squares. The blue and red home zones are the colored
regions on the left and right sides of the picture (respectively). Two blue players have taken
defensive positions near their flag on the left side of the world. Over on the right, three red
players are attempting to defend the red flag from two blue attackers. The remaining players

40

Figure 2.3: A screenshot of our Capture the Flag simulator. Each player is depicted as a
colored circle with a number written on it; the flags are depicted as colored squares.

41

(one blue and two red) are currently near midfield.

CTF World State

There are 12 domain objects in the CTF domain: 5 blue players pb0...4, 5 red players pr0...4
and 2 flags f b and f r. Each player pi is fully described by its position on the field (xpi

, ypi
).

Players cannot share the same location; if a player attempts to move into a square already
containing a player, the move action will fail. Each flag fk is defined by its position (xfk , yfk)
and a value ck that denotes which player is currently holding the flag, if any. If a player pi is
holding the flag fk, ck is set to i; otherwise, ck is set to None, a special value which indicates
that no player is holding the flag. For convenience, we define the set P = {pb0...4} ∪ {pr0...4}
of all players and the set F = {f b, f r} of flags.

Though the world state can be fully described with only 26 variables (the x- and y-positions
of each of the 12 objects, plus the ck values of each flag), the total number of possible
states in the domain is extremely large. Since the world is 72 × 48 squares in size, each of
the 10 players can be in one of 3456 possible locations, though no two players can share
the same location. Each flag can only be in one-half of the field (otherwise a score would
occur), so there are 1728 possible locations for each flag. This leads to a lower bound of(∏9

i=0 3456− i
)
×17282 ≈ 7.16×1041 states. (The actual number of world states is actually

slightly higher than this since the above calculation doesn’t consider the ck value for either
flag.)

CTF Actions and Effects

There are four types of low-level actions that can be chosen by each player in the CTF
domain. Players can move in the four cardinal directions (north, south, east, or west),
stay in position, pick up the opposing team’s flag, and tag opposing players. Table 2.3
provides a brief description of each action, along with which roles use that action. (Roles
are the top-level behaviors available to each player; CTF roles are described in full detail in
Section 2.2.2.) The full effects of these actions are described below and also defined formally
in Algorithms 2.1, 2.2, 2.3, and 2.4.

• MoveAction(d). (Formally described in Algorithm 2.1.) A player can choose to move
in any of the four cardinal directions. If the move action succeeds, the player will move
one square in the appropriate direction (lines 2–9 and 24–25). However, move actions

42

Action Brief Description Used By

MoveAction(d) Move one square in direction d.
(Stochastic and conditional)

Attacker, Midfielder, Defender

StayAction Stay in the same location.
(Deterministic)

Midfielder, Defender

PickupAction Pick up the opponents’ flag.
(Conditional)

Attacker

TagAction(pt) Tag an adjacent opponent pt.
(Conditional)

Attacker, Midfielder, Defender

Table 2.3: Summary of the low-level CTF actions available to each player. Some of the
low-level actions are only utilized by certain player roles.

fail stochastically: with probability 0.1, the player’s position remains unchanged (lines
11–12). Move actions also fail if the player requested to move outside the boundaries
of the world (lines 13–14), or into a square already occupied by some other player
(lines 15–17). Additionally, a player is not allowed to move within a certain distance
of its own flag unless the flag is being held by an opposing player (lines 18–23). This is
needed in order to give attacking players a chance to escape with the flag; otherwise a
team could mount a perfect defense by positioning four defenders immediately adjacent
to the flag. We found that a minimum distance of 5 squares was sufficient to allow a
reasonable tradeoff between the ability of attackers to pick up the flag and the ability
of defenders to successfully defend the flag from attackers. A player that is already
within Manhattan distance 5 of its own flag (perhaps due to successfully tagging an
opponent that had been holding the flag) is not allowed to move closer to the flag. Such
a player can move further away from the flag. If a player is carrying the opponents’ flag
and moves successfully, the flag moves to the same square as the player (lines 26–28).
If the new flag location is in the player’s home zone, that player’s team scores a point
(lines 29–30).

• StayAction. (Formally described in Algorithm 2.2.) A player can choose to stay in the
same position. This action always succeeds; the state of the world remains unchanged.

• PickupAction. (Formally described in Algorithm 2.3.) A player can choose to pick up
the opposing team’s flag. This action is legal only if the player’s position is equal to
the flag’s position and the flag’s ck value is None (lines 2–3). The result of this action
is that the ck value of the flag is set to the ID number of the player (line 4). Any
future move actions by this player will cause the flag to move along with the player
until either a score occurs or an opponent successfully tags the player. A player is not

43

allowed to pick up its own team’s flag.

• TagAction(pt). (Formally described in Algorithm 2.4.) A player can choose to tag a
specific opponent pt. A tag action succeeds only if the target is adjacent to the tagging
player and in the tagging player’s home zone (lines 2–3). If the tag is successful, the
opponent is immediately teleported to a position at the back of the opponents’ home
zone (line 4). If the target was holding a flag, the flag’s ck value is set to None (lines
5–7). If the tag is unsuccessful, there is no effect on the target player; the tagging
player remains in the same position.

In a single timestep of the CTF domain, all agents simultaneously observe the state of the
world and choose individual actions. Since CTF is a multi-agent domain, conflicting actions
can occur; for example, two agents might both attempt to move into the same square. In
order to resolve any possible conflicts, players’ actions are applied in a random order. If
one player’s action becomes invalid due to the previous action of another player, the new
action has no effect. The ordering of actions is particularly important when considering the
effects of tag actions; if the target of a tag action moves before the tag action is applied, the
tag action will fail since the target is no longer adjacent to the tagging player. Therefore,
the success rate of a given tag action is expected to be around 50%, assuming that the two
players were initially adjacent and that the target chooses to move in a direction away from
the tagging player.

2.2.2 Roles

We have developed three roles (top-level player behaviors) for our CTF domain: attacker, de-
fender, and midfielder. At each time step the role is given the world state (as specified above)
and chooses an appropriate action. The behavior of each of these roles is described below.
We present formal descriptions of the behavior of each of the roles after the descriptions.

• Attacker. The Attacker role is primarily responsible for entering the opponents’ half
of the field and scoring. Each attacker attempts to approach the opponents’ flag, pick
it up, and bring it back to the home zone to score. Attackers are almost entirely
single-minded in their pursuit of the flag; upon being tagged, an attacker immediately
heads back toward the opposing flag. If an attacker is in its home zone, it will not
go out of its way to tag an opposing player; however, if the attacker happens to be
directly adjacent to an opposing player, the attacker attempts to tag the opponent.
Algorithm 2.5 formally describes the behavior of the attacker role.

44

Algorithm 2.1 Effects of a MoveAction in the CTF domain.

1: Given: player pki playing for team k, direction d ∈ {N,S,E,W}
2: if d = N then
3: (x, y)← (xpi

, ypi
− 1)

4: else if d = S then
5: (x, y)← (xpi

, ypi
+ 1)

6: else if d = E then
7: (x, y)← (xpi

− 1, ypi
)

8: else if d = W then
9: (x, y)← (xpi

+ 1, ypi
)

10: m← True // if set to False, the move action fails
11: if Random() < 0.1 then
12: m← False
13: if Invalid-Position(x, y) then
14: m← False
15: for pj ∈ P do
16: if i 6= j ∧ (x, y) = (xpj

, ypj
) then

17: m← False
18: for f j ∈ F do
19: if j 6= k ∧ cj = None then
20: δ = Manhattan((xfj , yfj), (xpi

, ypi
))

21: δ′ = Manhattan((xfj , yfj), (x, y))
22: if δ′ < 5 ∧ δ′ < δ then
23: m← False
24: if m = True then
25: (x′pi

, y′pi
)← (x, y)

26: for f j ∈ F do
27: if cj = i then
28: (x′fj , y′fj)← (x, y)
29: if (x, y) is in pi’s home zone then
30: scorek

′ ← scorek

31: else
32: (x′pi

, y′pi
)← (xpi

, ypi
)

Algorithm 2.2 Effects of a StayAction in the CTF domain.

1: Given: player pki playing for team k
2: (x′pi

, y′pi
)← (xpi

, ypi
)

45

Algorithm 2.3 Effects of a PickupAction in the CTF domain.

1: Given: player pki playing for team k
2: for f j ∈ F do
3: if j 6= k ∧ cj = None ∧(xpi

, ypi
) = (xfj , yfj) then

4: cj
′ ← i

Algorithm 2.4 Effects of a TagAction in the CTF domain.

1: Given: player pki playing for team k, target player pκt (with k 6= κ)
2: δ ← Manhattan((xpi

, ypi
), (xpt , ypt))

3: if δ = 1 ∧ pt is in pi’s home zone then
4: (x′pt

, y′pt
)← (random position at the back of pt’s home zone)

5: for f j ∈ F do
6: if cj = t then
7: cj

′ ← None

• Defender. The Defender role is tasked with defending the flag from capture by the
opponent team. A team’s defenders encircle the flag (at the minimum legal radius of 5
squares) and wait for the opponents’ attackers to approach. The exact positions taken
by the defenders depend on the number of players playing in the Defender role. If only
one player is defending, it will take a position between the flag and the opponents’
home zone; if four players are defending, they will encircle the flag from all sides.
Figure 2.4 shows the exact positions taken by the defenders in each possible case. If
any opponents are near enough to tag, the defender attempts to tag them, preferring
to tag a player which is holding the flag (if any). If any opponent possesses the flag
but is not near enough to be tagged, the defender moves toward the opponent in an
attempt to get within tagging distance. If an opponent possessing the flag is tagged,
the defenders re-form their circle around the new location of the flag. Algorithm 2.6
formally describes the behavior of the defender role.

• Midfielder. The Midfielder role is a primarily used as a second line of defense in the
event that an opposing attacker manages to pick up the flag and escape the encircling
defenders. The midfielder positions itself in the home zone, near the midfield line
and between the team’s flag and the opponents’ home zone. The midfielder waits in
position until the team’s flag is picked up by an opponent. Once the flag is picked up,
the midfielder moves toward the opponent and attempts to tag. If the tag is successful,
the flag is dropped and the midfielder returns to its home position. The midfielder may
also opportunistically tag opponents without the flag which happen to come nearby;
however, the midfielder will not move far from its home position in order to give chase.
Algorithm 2.7 formally describes the behavior of the midfielder role.

46

Formal descriptions of all three roles are provided below. We assume the existence of a
library of basic low-level functions:

• Go-To-Point(x, y) returns a MoveAction that moves the player one square closer to
the destination (x, y). It is called by all the roles in order to move the players to their
desired positions.

• Choose-Tag-Target() returns the ID of an opponent that can be tagged, or None
if there are no opponents near enough to tag. If multiple opponents are adjacent,
this function returns the one which is carrying the flag, if any; otherwise a random
opponent is returned. This function is called by all the roles in order to tag opponents.

• Choose-Return-Location() chooses a random location in the player’s home zone,
near the midfield line. It is called by the attacker when it picks up the opponents’ flag.
As long as the attacker continues to carry the flag, the attacker will move towards the
return location chosen, in order to successfully complete the capture of the opponents’
flag.

• Choose-Defense-Position() chooses the home position used by the defender. As
shown in Figure 2.4, the home position of each defender depends on the number of
defenders assigned by the current play.

• Choose-Midfield-Position() chooses the home position used by the midfielder.

Algorithm 2.5 Behavior of the CTF Attacker role.

1: Given: player pki playing for team k
2: j ← Other-Color(k)
3: if (xp, yp) = (xfj , yfj) then
4: if cj = None then
5: ρ← Choose-Return-Location()
6: return PickupAction()
7: else if cj = i then
8: return Go-To-Point(ρ)
9: τ ← Choose-Tag-Target()

10: if τ 6= None then
11: return TagAction(τ)
12: return Go-To-Point(xfj , yfj)

47

Algorithm 2.6 Behavior of the CTF Defender role.

1: Given: player pki playing for team k
2: τ ← Choose-Tag-Target()
3: if τ 6= None then
4: return TagAction(τ)
5: if ck = None then
6: return Go-To-Point(Choose-Defense-Position())
7: else
8: return Go-To-Point(xfk , yfk)

Algorithm 2.7 Behavior of the CTF Midfielder role.

1: Given: player pki playing for team k
2: τ ← Choose-Tag-Target()
3: if τ 6= None then
4: return TagAction(τ)
5: if ck = None then
6: return Go-To-Point(Choose-Midfield-Position())
7: else
8: return Go-To-Point(xfk , yfk)

2.2.3 Plays

As in robot soccer, each play in CTF provides an assignment of roles to each player on
the team. We name each play in the form: Aa Mm Dd, where a, m, and d are the number
of attackers, midfielders, and defenders on the team, respectively. For example, the play
A3 M1 D1 assigns three attackers, one midfielder, and one defender. We found that having
more than one midfielder on the team was never significantly better than having zero or one
midfielders. For the work presented in this thesis, we therefore restricted the set of plays to
all those which included zero or one midfielder. There are eleven such plays: six plays with
no midfielder (ranging from zero to five attackers on the team, with the remainder of the
players defending), and five plays with one midfielder (ranging from zero to four attackers,
with the remainder of the players defending).

48

Figure 2.4: Positions taken by the defenders depending on the number of defenders on the
team. The opponents’ home zone is to the right.

49

Figure 2.5: A sample CAPTCHA, shown to a user as part of the account signup process
for creating a Google Mail (Gmail) account.

2.3 reCAPTCHA

A CAPTCHA1 is a challenge-response test that can be used to tell humans and computers
apart [76]. CAPTCHAs are typically used to prevent automated registrations on Web-based
email services and other Web sites. The most common form of CAPTCHA consists of an
image that contains distorted words or letters, as shown in Figure 2.5. The user is prompted
to type in the letters that appear in the image. In order to correctly distinguish between
humans and computers, a CAPTCHA must present the user with a challenge that is relatively
easy for humans to solve, but difficult or impossible for computers to solve. Therefore, every
time a human solves a CAPTCHA, he/she is performing a task that is known to be difficult
for state-of-the-art AI algorithms.

The reCAPTCHA project, http://recaptcha.net, aims to make positive use of this pre-
cious human computation power by using human responses to CAPTCHAs to aid in the
digitization of old books, newspapers, and other texts [77]. Typically, such texts are dig-
itized by scanning the entire source document, then running optical character recognition
(OCR) software on the resulting images in order to recover the original text in digital form.
However, state-of-the-art OCR software cannot achieve perfect transcription accuracy, es-
pecially on old books in which the words are often faded and distorted. In these cases,
the OCR software will output its best guess for the word, but with a low confidence score.
reCAPTCHA takes these low-confidence OCR words and displays them to users in the form
of a CAPTCHA challenge. These human answers are then used to improve the accuracy of
the digitized text. Figure 2.6 shows an example of this process. In this example, the circled
word is read as “announcacl” by the OCR software, but with low confidence. This unknown
word is extracted from the source document and shown to users, who type in the correct
spelling: “announced.” To check whether the user is a human, the CAPTCHA also displays

1The word “CAPTCHA” is an acronym for Completely Automated Public Turing test to tell Computers
and Humans Apart.

50

http://recaptcha.net

Figure 2.6: reCAPTCHA digitization example.

a known word, for which the correct spelling is already known—“Eugene” in the example
above. To ensure that automated programs cannot read the words, both words are distorted,
and a black line is drawn through them.

Figure 2.7 shows a simplified outline of the complete reCAPTCHA system. reCAPTCHA
maintains pools of known words and unknown words. When a new document is added to
the system, any words that OCR cannot confidently read are added to the pool of unknown
words. For some documents, there may also be an associated time deadline; if so, the system
only has a limited amount of time available to digitize the document. For the purpose of this
thesis, the most important aspect of the reCAPTCHA system is the “Challenge Generator,”
which is responsible for choosing words from the word pools and displaying them to users in
the form of CAPTCHA challenges. If we have a hard time deadline, the challenge generator
is faced with a control problem: how should we choose challenges such that we maximize
the probability of digitizing the entire document before the deadline? This turns out to be a
particularly challenging problem because the rewards achieved are unknown; i.e., the system
does not know whether a user’s response to an unknown word is actually the correct spelling
of that word. We address this problem of unknown rewards in Chapter 7.

During normal reCAPTCHA operation, the challenge generator sends one known word and

51

Figure 2.7: Outline of the reCAPTCHA system.

one unknown word to each user. If the user answers the known word correctly, their response
for the unknown word is counted as a “vote” for the correct spelling of that word. If enough
users agree on the spelling of the unknown word, it is moved into the pool of known words.
More details on the production reCAPTCHA system, which has been online since May 2007,
can be found in [77].

While most users make a good-faith effort to correctly transcribe the words, some users
maliciously submit incorrect answers a high fraction of the time, which could potentially
result in incorrect transcriptions. If a relatively large proportion of users are malicious at
a given time, the challenge generator can limit the damage done by temporarily serving
two known words to all users. This means that no new words are transcribed, but the
quality of the transcription is not negatively affected by the malicious users. Conversely, if
we know that all users are not malicious, the challenge generator could theoretically send
two unknown words to each user, doubling the transcription rate but increasing the chance
that any malicious user would be able to seed incorrect transcriptions into the system. (The
production reCAPTCHA system would never send two unknown words to a user, because this
would severely compromise the ability to distinguish humans from computers. However, for
the experiments presented in this thesis, we only address the problem of digitizing documents,
ignoring the security implications of such a choice.)

52

We present a detailed MDP model of the reCAPTCHA domain in Section 7.1. This model is
derived by analyzing the answers provided by 31,163 of the most active reCAPTCHA users.
Over a six-month period, these users submitted over 29 million answers to reCAPTCHA. By
itself, this MDP model does not involve time or score. However, in Chapter 7, we address the
problem of trying to maximize the probability that all w words in a document are successfully
transcribed by some time deadline h. A further challenge in the reCAPTCHA domain is
that the rewards achieved are unknown at execution time; i.e., the system does not know
whether a user’s response to an unknown word is actually the correct spelling of that word.
We also address this problem of unknown rewards in Chapter 7.

2.4 Summary

In this chapter, we have presented the three domains that are used throughout this thesis:
robot soccer, Capture the Flag, and reCAPTCHA. These domains all feature a hard time
deadline, some notion of score, and an overall goal of attaining a certain score by the end
of the time horizon. Robot soccer and Capture the Flag are timed, zero-sum games, in
which the goal is to maximize our probability of winning: being ahead in score when time
runs out. Robot soccer is a rich domain presenting many challenges; in this thesis, we focus
mainly on the problem of choosing strategies such that we win against the opponent team.
Capture the Flag eliminates many of the complexities of robot soccer, allowing us to focus
solely on the challenges of finding team strategies that win against the opponent team. In
the reCAPTCHA domain, we are given a document that needs to be digitized by some
time deadline, and need to act so as to maximize the probability that the document is fully
digitized by the deadline. Unlike robot soccer and Capture the Flag, reCAPTCHA is not
an adversarial domain. However, we still care about the time remaining and the “score”
(number of words successfully digitized so far). Furthermore, in the reCAPTCHA domain,
we have unknown rewards: since we don’t know whether a human’s answer is correct or not,
rewards are hidden from the agent at execution time.

In the next chapter, we introduce the concept of thresholded-rewards MDPs (TRMDPs).
With TRMDPs, our true reward is calculated as a threshold function on the cumulative
intermediate reward achieved during execution. For the domains presented in this chapter,
these threshold functions enable us to accurately model the desired goals. For robot soccer
and Capture the Flag, we want to maximize the probability that our score − opponent score
is positive at the end of the game; for reCAPTCHA, we want to maximize the probability
that we have successfully digitized at least w words by the time deadline.

53

54

Chapter 3

Thresholded-Rewards MDPs

Markov Decision Processes (MDPs) are a powerful tool for planning in the presence of
uncertainty. MDPs provide a theoretically sound means of achieving optimal rewards in
uncertain domains. The standard MDP problem is to find a policy π : S → A that maps
states to actions such that the cumulative long-term reward is maximized according to some
objective function [4]. Over an infinite time horizon, the objective function is typically a
sum of discounted rewards or the average reward rate as t→∞ [22, 34]. Over a finite time
horizon, a discount factor is not needed, and the objective function is typically the sum of
the rewards achieved at each time step.

As discussed in Chapter 2, our work is motivated by domains with a notion of “score”
and limited time, including robot soccer, Capture the Flag (CTF), and reCAPTCHA. In
timed, zero-sum games, such as robot soccer and CTF, winning against the opponent is
more important than the final score. Therefore, a team that is losing near the end of
the game should play aggressively to try to even the score even if an aggressive strategy
allows the opponent to score more easily. Even in a domain without an adversary, such as
reCAPTCHA (in which there is a given amount of work to complete in a finite amount of
time), we might also expect that an agent which is “behind schedule” with respect to the
deadline might act more aggressively, and that an agent which is ahead of schedule might
act more conservatively. In Section 2.1, we discussed how a team of soccer-playing robots
can change plays (high-level team strategies) based on factors such as the time remaining in
a game and the score difference [38,39,61]. However, this strategy selection was hand-tuned,
using simple rules such as, “If our team is losing and there is less than one minute remaining,
play aggressively”.

In this chapter, we utilize MDPs to derive optimal strategy selections for domains with score

55

and limited time. Rather than maximizing the cumulative score over h time steps, we apply
a threshold function f to the final cumulative score and seek to maximize the value of f .
We call this the thresholded-rewards objective function. For zero-sum games, such as robot
soccer, a thresholded-rewards objective function allows us to model our goal of winning:
being ahead of the opponent after some number of time steps. The optimal policy for such
a domain is one that maximizes the probability of being ahead at the end of the game. Such
a policy will generally be nonstationary: the optimal action from a given state depends on
the number of timesteps remaining and the current score difference.

In this chapter, we present an algorithm which takes in a base MDP describing the stationary
dynamics of a domain and a threshold function we desire to maximize. This algorithm
creates an expanded MDP which is annotated with score and time values; the resulting
MDP is only polynomially larger than the base MDP. This expanded MDP can be solved
using value iteration (or any other MDP solution technique) in order to recover the optimal
policy. This optimal policy maximizes the expected value of the threshold function applied
to the cumulative score. The running time of value iteration on the expanded MDP has
a quadratic dependence on the number of states in the MDP and the length of the time
horizon. For MDPs with large state spaces or long time horizons, the exact algorithm
may be intractable. In the next chapter, we investigate a variety of approximate solution
techniques for thresholded-rewards problems.

3.1 Definition of a Thresholded-Rewards MDP

We use the standard (S,A, T,R, s0) notation for representing MDPs; for simplicity, we as-
sume that rewards are found in the states of the MDP (rather than in state/action pairs).
The optimal policy π of an MDP can be found exactly using a technique known as value
iteration, which uses the Bellman equation [46]:

V n+1(s) = max
a∈A

{
R(s) + γ

∑
s′∈S

T (s, a, s′)V n(s′)
}
,

where V 0(s) = R(s) and γ ∈ (0, 1] is a discount factor. For an infinite-horizon problem,
V k converges to some V ∗ as k → ∞ (for γ < 1). The optimal policy π∗ for an infinite-
horizon MDP is stationary (does not depend on time). For a finite-horizon problem with
k timesteps remaining, V k allows us to find the optimal next action from any state. This
optimal action may depend on the number of time steps remaining; such a policy is said to
be nonstationary. MDPs can also be solved with policy iteration. In this thesis, we primarily
focus on value iteration techniques; however, the algorithms presented in this thesis can be
trivially generalized to policy iteration techniques.

56

Let a thresholded-rewards MDP (TRMDP) be a tuple (M, f, h), where M is an MDP
(S,A, T,R, s0), f is a threshold function, and h is an integer (the time horizon). Infor-
mally, M runs for h time steps while the agent collects cumulative intermediate rewards
rintermediate; at the end, the agent receives a true reward rtrue according to f(rintermediate).
A policy π for a TRMDP is nonstationary: it takes in a state s ∈ S, the time remaining,
and the intermediate reward achieved so far. Formally, the dynamics of a TRMDP are as
follows:

Algorithm 3.1 Dynamics of a thresholded-rewards MDP.
s← s0

rintermediate ← 0
for t← h to 1 do

a← π(s, t, rintermediate)
s← s′ ∼ T (s, a)
rintermediate ← rintermediate +R(s)

rtrue ← f(rintermediate)

Robot soccer and CTF are timed, zero-sum games. In these domains, we consider the
intermediate reward to be the difference between our agent’s score and our opponent’s score.
We define the zero-sum reward threshold function as:

rtrue =

1 if rintermediate > 0

0 if rintermediate = 0

−1 if rintermediate < 0.

(3.1)

This function assigns true reward of 1 for a win, −1 for a loss, and 0 for a tie. In the
reCAPTCHA domain, we instead are given a document containing w words and want to
ensure that we digitize all w words before the deadline. In this case, we need to use a
zero-one reward threshold function such as:

rtrue =

{
1 if rintermediate ≥ w

0 otherwise.
(3.2)

In a thresholded-rewards problem, we wish to find the optimal policy π∗ that maximizes the
expected value of rtrue. It is important to note that, in general, 1) π∗ will be nonstationary
and 2) π∗ is not the policy that maximizes expected intermediate reward. Though we focus
on these two reward threshold functions in this thesis, our results generalize to arbitrary
threshold functions.

57

For (+1)

Against (-1)

None (0)

a T (∗, a,For) T (∗, a,Against) T (∗, a,None)
balanced 0.05 0.05 0.9
offensive 0.25 0.5 0.25
defensive 0.01 0.02 0.97

Figure 3.1: Example MDP M , inspired by robot soccer.

3.2 TRMDP Example

In a TRMDP, the optimal policy will generally be nonstationary. To illustrate this, we
present an example—inspired by robot soccer—that will be used throughout the remainder
of this chapter. We simplify the robot soccer domain significantly by modeling it as an MDP
M with three states, as shown in Figure 3.1:

1. For: our team scores a goal (reward +1)

2. Against: the opponents score a goal (reward −1)

3. None: no score occurs (reward 0)

Our agent is a team of robots, and each action choice corresponds to a strategy (play) the
team can adopt. In this example, we consider three different plays: balanced, offensive, and
defensive. We treat the opponent team as static, using the transition probabilities to model
the opponent as part of the environment. The transition probabilities of these actions are
shown in Figure 3.1. When the balanced play is chosen, our agent has a 5% chance of scoring
and the opponent has a 5% chance of scoring. The offensive play is risky: it increases our
team’s chance of scoring but gives the opponent an even greater chance of scoring. Inversely,
the defensive play is conservative. For simplicity, these transition probabilities do not depend
on the current state.

The expected one-step reward of action a from state s is equal to
∑

s′ R(s′) × T (s, a, s′).
Using this, we can compute the expected one-step reward of each action:

58

• balanced: 0 = 0.05× 1 + 0.05×−1 + 0.9× 0

• offensive: −0.25 = 0.25× 1 + 0.5×−1 + 0.25× 0

• defensive: −0.01 = 0.01× 1 + 0.02×−1 + 0.97× 0

If we use the standard maximize-expected-rewards objective function, the optimal policy for
M is to execute the balanced action at every time step. The balanced play has the highest
expected one-step reward, and (for this MDP) also has the optimal expected long-term
reward for any choice of γ in the range [0, 1].

However, our team’s goal is not to maximize expected rewards, but to maximize the prob-
ability that we finish the game with a higher score than the opponent. We view this as
a thresholded-rewards problem: we apply the zero-sum threshold function to our agent’s
cumulative intermediate reward and maximize the expected value of this threshold function.
With thresholded rewards, the policy of always choosing balanced has an expected true re-
ward of 0, with the probability of winning being equal to the probability of losing. The
exact probability of each result depends on the time horizon h and can be determined by
the multinomial probability distribution. For h = 120, the probability of winning is 44.2%,
the probability of losing is 44.2%, and the probability of tying is 11.6%.

However, this policy is suboptimal for the thresholded-rewards problem, as it is possible to
achieve a positive true reward in this domain. In Section 3.5, we derive the optimal policy
for this domain, which has an expected true reward of 0.1457 (for h = 120). Qualitatively,
the optimal policy is nonstationary, choosing the offensive action if our agent is losing near
the end of the game and choosing the defensive action if our agent is winning near the end
of the game. By doing so, the optimal policy increases the chance of getting a “win” or “tie”
result, at the expense of maximizing the expected value of the intermediate rewards.

3.3 TRMDP Conversion Algorithm

The MDP M shown in Figure 3.1 is a base MDP: M gives the transition dynamics of a
domain, but M does not include any concept of cumulative score or time remaining. To solve
the thresholded-rewards problem optimally, we need to include all possible combinations of
base states, score, and time remaining.

In order to solve a TRMDP (M, f, h), we create a new MDP M ′ such that finding the policy
that maximizes reward in M ′ is equivalent to finding the policy that maximizes f(rintermediate)

59

Algorithm 3.2 Converts a TRMDP (M, f, h) into an minimal MDP M ′ suitable for finding
the optimal thresholded-rewards policy.

1: Given: MDP M = (S,A, T,R, s0), threshold function f , time horizon h
2: s′0 ← (s0, h, 0)
3: S ′ ← {s′0}
4: for i← h to 1 do
5: for all states s′1 = (s1, t, ir) ∈ S ′ such that t = i do
6: for all transitions T (s1, a, s2) in M do
7: s′2 ← (s2, t− 1, ir +R(s2))
8: S ′ ← S ′ ∪ {s′2}
9: T ′(s′1, a, s

′
2) = T (s1, a, s2)

10: for all states s′ = (s, t, ir) in M ′ do
11: if t = 0 then
12: R′(s′)← f(ir)
13: else
14: R′(s′)← 0
15: return M ′ = (S ′, A, T ′, R′, s′0)

in M .1 In the next section, we present an algorithm that solves the converted MDP M ′

efficiently.

Algorithm 3.2 shows our TRMDP conversion algorithm. Each state s′ in the converted
MDP M ′ is a tuple (s, t, ir), where s is a base state from M , t is the number of time steps
remaining, and ir is the cumulative intermediate reward received by the agent within the
first h − t time steps. By design, the optimal action for a state s′ = (s, t, ir) in M ′ is the
optimal action for being in some state s in M with t time steps remaining and cumulative
intermediate reward of ir. Solving M ′ allows us to extract the optimal non-stationary policy
for the TRMDP (M, f, h).

We now explain Algorithm 3.2 in detail. On line 2 of the conversion algorithm, the initial
state s′0 of M ′ is set to (s0, h, 0), indicating that the agent starts in state s0, with h time steps
remaining, and no cumulative intermediate reward. S ′ is the set of states in the converted
MDP; S ′ initially contains only the starting state s′0.

The first loop (lines 4–9) generates all the remaining states in S ′ and the new transition
function T ′. This loop iterates from h steps remaining down to 1; at iteration i it generates

1Throughout the remainder of this chapter, we will use s′, T ′(s′, a, s′
2), and R′(s′) to refer to the states,

transitions, and rewards of the converted MDP M ′. We will use s, T (s, a, s2), and R(s) to refer to the base
MDP M .

60

None,3,0

Against,2,-1

 0.05

For,2,1

 0.05

None,2,0

 0.90

For,0,3None,0,-1None,0,-2 For,0,0 For,0,1 Against,0,0For,0,-1

For,1,0

 0.05

None,1,-1

 0.90

Against,1,-2

 0.05

For,0,2Against,0,-1Against,0,-2Against,0,-3

Against,1,0

 0.05

For,1,2

 0.05

None,1,1

 0.90

 0.05 0.05

None,0,0

 0.90

Against,0,1

 0.05 0.05

None,0,2

 0.90

For,1,1

 0.05 0.05

None,0,1

 0.90 0.05 0.05 0.90 0.05 0.05 0.90

None,1,0

 0.05 0.05 0.90

 0.05 0.90

Against,1,-1

 0.05

 0.90 0.05 0.05 0.90 0.05 0.05 0.90 0.05 0.05

Figure 3.2: The MDP M ′ returned by Algorithm 3.2 given the MDP M (presented in Figure
3.1) and h = 3. Lightly-shaded states have reward 1; darkly-shaded states have reward -1;
unshaded states have reward 0. Transition probabilities for the balanced action are shown.

all states that have i − 1 time steps remaining, by finding all the states in S ′ with i time
steps remaining (line 5) and generating all possible successors of these states. For each such
state s′1 = (s1, t, ir), the algorithm finds all transitions in M from s1 to some other state
s2 on action a (line 6). A new state s′2 is created for each such s2. Each s′2 has base state
s2, i − 1 time steps remaining, and cumulative intermediate reward ir + R(s2) (line 7). s′2
is added to S ′ if it doesn’t already exist (line 8). The transition probability T ′(s′1, a, s

′
2) is

equal to the transition probability T (s1, a, s2) of the base MDP M (line 9).

The second loop (lines 10–14) assigns rewards to each state in S ′. Each final state is assigned
reward based on applying the threshold function f to the cumulative intermediate reward ir
(line 12). Non-final states are assigned reward 0 (line 14). The algorithm has now defined
S ′, T ′, R′, and s′0; the action space A is left unchanged. The converted MDP M ′ is then
(S ′, A, T ′, R′, s′0) (line 15).

Figure 3.2 shows the result of applying the conversion algorithm to the example MDP M
(with h = 3). Each state s′ in M ′ is a tuple (s, t, ir), where s is a base state from M , t is the
number of time steps remaining, and ir is the cumulative intermediate reward received by the
agent within the first h− t time steps. The agent starts in state (None, 3, 0), indicating that
the agent is in base state None with 3 time steps remaining and no cumulative intermediate
reward. At every time step, t decreases by 1; ir increases by 1 when our team scores a goal
(when we enter the For state) and decreases by 1 when our opponent scores a goal (when
we enter the Against state). The final states are the only states with any reward; our agent
receives reward +1 for a win, −1 for a loss, and 0 for a tie.

61

3.4 TRMDP Solution Algorithm

The optimal policy for a TRMDP (M, f, h) is the solution to M ′, which is generated by
Algorithm 3.2 and can be solved using any MDP solution technique. The following facts
about M ′ allow for an efficient value iteration algorithm:

Fact 1. M ′ has a layered, feed-forward structure: every layer contains transitions only into
the next layer.

All MDPs generated by the conversion algorithm will have this structure due to the fact that
t must decrease by 1 at every time step. (Figure 3.2 shows this fact visually.)

Fact 2. At iteration k of value iteration, the only values that change are those for the states
s′ = (s, t, ir) such that t = k.

By design, non-zero rewards are found only in the bottom layer of the MDP; with each
iteration of value iteration, these rewards propagate up to all the states in the next-higher
layer. The value iteration algorithm completes after computing V h; that is, when all the
rewards have percolated up to the initial state.

These facts allow for an efficient implementation of value iteration on M ′: we start at the
t = 0 layer and apply Bellman backups until the rewards “bubble up” to the top. At iteration
k, we only need to calculate the value of the states in layer k of M ′ (that is, the states where
t = k). Also, we do not need to sum over all states in S ′ when computing each value but
only its O(|S|) potential successors in the next lower layer (those states where t = k − 1.)
Since each state is backed up only once, the running time of value iteration is proportional
to |S ′|, the number of states in M ′.

The states of M ′ are arranged into h+ 1 layers. At most, each layer k will have one state for
every combination of s and ir that is possible to achieve after h− k steps. At the top level,
there is only one possible intermediate reward value. If we assume that intermediate rewards
are drawn from a set N of small integers (which is typically the case for timed, zero-sum
games), then the number of possible intermediate-reward values at each subsequent layer
grows by (at most) the magnitude m of the largest element in N . The number of states in
layer k is therefore upper bounded by |S| × (h− k)×m, and the total number of states in
the h+ 1 layers of M ′ is O(|S|h2m). Each Bellman update requires a maximization over |A|
actions of a sum of ≤ |S| possible successor states. Since each state is updated exactly once,
the worst-case running time of value iteration on M ′ is O(|A||S|2h2m).

62

Figure 3.3: The optimal policy for M (shown in Figure 3.1), with time horizon h = 120
steps.

3.5 Results

Figure 3.3 shows the optimal policy for the example MDP M (Figure 3.1) with time horizon
h = 120. The y-axis shows the number of time steps remaining; the x-axis shows the
cumulative intermediate reward (score difference). The shaded areas show the optimal action
for every possible combination of time remaining and intermediate reward. (Since M ’s
transition probabilities are the same from every state, the policy does not depend on the
current state.) This policy has an expected reward of 0.1457. By following this policy, our
agent will win approximately 50% of the time, lose 35% of the time, and tie 15% of the time.

Figure 3.3 shows that the optimal policy for M is nonstationary: the policy depends on the
number of time steps remaining and the cumulative intermediate reward. Qualitatively, the
optimal policy is to choose the defensive play when winning by a significant number of points
and to choose the offensive play when losing by a significant number of points. When the
score is close to a tie, the best play is balanced. As the time remaining decreases, the point
difference needed to choose offensive or defensive decreases—the agent acts more urgently.
The don’t care regions in the lower-left and lower-right of the figure are states from which the
actions of the agent no longer have any effect on the final outcome, because the number of
steps remaining is greater than the score difference. In these regions, all actions have equal
expected reward and the agent can choose between them arbitrarily.

63

Figure 3.4: Effect of changing the opponent’s capabilities.

In Figure 3.4, we show the effect of changing the opponent’s capabilities. Specifically, we
vary the probability T (∗, balanced, Against) of our opponent scoring when we choose
the balanced action. The y-axis shows the expected true reward of following the optimal
maximize-expected-rewards policy (MER) and of following the optimal thresholded-rewards
policy (TR). In all cases, TR performs better than MER. It is interesting to note that the
difference between the two objective functions is greatest when the capabilities of each team
are similar—that is, where T (∗, balanced, Against) is close to 0.5.

We also consider the performance of MER and TR on 5000 randomly generated MDPs.
Each of these MDPs has the same structure as M (shown in Figure 3.1), but the transition
probabilities of each state/action pair are chosen as follows: T (s, a, Against) is chosen
uniformly from [0.0, 0.5); T (s, a, For) is chosen uniformly from [0.9, 1.0)×T (s, a, Against);
and T (s, a, None) is set such that the three probabilities sum to 1. Note that our team is
less likely to score than the opponents at every timestep, no matter which action is chosen.
Therefore, the expected true reward of MER is negative for every MDP. Figure 3.5 is a
histogram depicting the distribution of true rewards for MER and TR on these 5000 MDPs.
Each bar shows the number of MDPs that have optimal policies within a given range of true
rewards. The mean true reward for MER is −0.0659; the mean true reward for TR is 0.1971.
These results show that explicitly reasoning about score and time remaining allows our team
to win with high probability, even against an opponent that is otherwise superior.

64

Figure 3.5: Performance of maximize-expected-rewards and thresholded-rewards on 5000
randomly generated MDPs.

3.6 Summary

In this chapter, we introduced thresholded-rewards problems, in which an agent gains inter-
mediate rewards during execution in a finite-horizon environment. At the end of the horizon,
the agent receives a true reward, which is determined by applying a threshold function to the
intermediate rewards. Thresholded rewards are particularly applicable to timed, zero-sum
games, such as robot soccer and Capture the Flag. In these domains, thresholded rewards
allow us to maximize the probability of winning. Thresholded rewards are also applicable
in other stochastic domains with a hard deadline, such as reCAPTCHA; in these domains,
thresholded rewards can be used to maximize the probability of achieving a given amount
of reward before the deadline.

We have presented an algorithm that converts a base MDP into an expanded MDP suitable
for solving thresholded-rewards problems. Solving this expanded MDP yields the optimal,
nonstationary policy for the original MDP. In this chapter, we focus on an efficient value
iteration algorithm which finds solutions to thresholded-rewards MDPs in O(|A||S|2h2m)
time.

As presented in this chapter, thresholded-rewards MDPs assume that the opponent is static
and can be treated as part of the environment. If the opponent is unknown, or changes
its strategy during the course of the game, we cannot model the opponent as a static part
of the environment. In Chapter 6, we consider relaxing these assumptions. In the next
chapter, we present a variety of heuristic solution techniques that can be used to efficiently

65

find approximately optimal policies for thresholded-rewards MDPs.

66

Chapter 4

Heuristics for TRMDPs

In Chapter 3, we introduced an algorithm that converts a base MDP into an expanded
MDP suitable for solving thresholded-rewards problems. This algorithm finds solutions to
thresholded-rewards MDPs in O(|A||S|2h2m) time. This quadratic dependence on state
space size and time horizon length means that the exact algorithm may be computationally
intractable for MDPs with many thousands of states or with time horizons that are several
thousand time steps long. In this chapter, we introduce three different heuristic techniques
that find approximate solutions to TRMDPs. These heuristics trade off computation time
with solution quality, achieving performance close to the optimal solution while using signif-
icantly less computation time. Each of these heuristics can be seen as an informed version
of state aggregation [28], in which states are aggregated based on the time remaining. This
state aggregation is in essence equivalent to changing the resolution of time discretization.

4.1 The Uniform-k Heuristic

With the uniform-k heuristic, our agent adopts a nonstationary policy (mapping from states
in the base MDP to actions) but only considers changing its policy every k time steps. The
net effect of this change is to “compress” the time horizon uniformly by a factor of k, directly
leading to a decrease in the state space of the expanded MDP M ′. This solution is more
efficient, but suboptimal because it does not consider switching policies at every time step.

Figure 4.1 shows the uniform-10 policy for our example domain with time horizon h = 120
steps. Only the policy decision times are shown; at all other time steps, the last decision is

67

Figure 4.1: The uniform-10 policy for M with time horizon h = 120 steps. Only the policy
decision times are shown; at all other time steps, the last decision is maintained.

maintained. The uniform-10 policy has the same general form as the optimal policy, but since
it only needs to make a decision every 10 steps, the number of states in the expanded MDP
(and therefore the time required to compute the optimal solution) is significantly reduced.

To compute the uniform policy, we need to change the TRMDP conversion algorithm (Al-
gorithm 3.2) slightly, specifically the computation of the expanded states (lines 6–7). The
optimal algorithm uses the one-step transition function of the base MDP to compute new
expanded states. With uniform-k, we instead need a k-step transition function. Formally,
let Tk(s1, a, s2) be the function that returns the probability that we end up in state s2, given
that we start in state s1 and choose action a for all of the next k time steps. Tk can be
defined recursively, as follows:

Base case: T1(s1, a, s2) = T (s1, a, s2).
The one-step transition probability is calculated directly from the transition function of the
base MDP.

Inductive case: Tk(s1, a, s2) =
∑

s3∈S(Tk−1(s1, a, s3)× T1(s3, a, s2)).
We sum over all states s3 that are reachable in k− 1 time steps. For every such state s3, we
find the probability of ending up in s3 if we start in s1 and choose action a for k − 1 steps,
and multiply this value by the one-step transition probability from s3 to s2 on action a.

68

A simple dynamic programming algorithm uses these recurrences to efficiently compute the
k-step transition function Tk(s1, a, s2) for every possible combination of s1, a, and s2. Tk
is precomputed before running the TRMDP conversion algorithm; line 6 of Algorithm 3.2
then uses Tk instead of T . One related change is needed: on line 7 of Algorithm 3.2, we
need to consider the distribution of reward values accumulated during the k steps from s1

to s2 instead of simply using R(s2). However, this distribution of reward values can be
precomputed alongside Tk, using an analogous recurrence.

The resulting expanded MDP has fewer states than the optimal MDP. The h levels of the
optimal MDP are replaced by h/k levels in the uniform-k approximation; the resulting
number of states in the uniform-k MDP is O(|S|h2

k
m), which is smaller by a factor of k.

For most MDPs, this smaller state space size directly corresponds to a decrease in the time
needed to solve the expanded MDP. However, in the worst case, the average state in the
uniform-k MDP might have more successors than the average state in the optimal MDP
(since we are taking k steps “at once,” there are more possible final states). If the average
number of transitions per state in the uniform-k MDP is a factor of k bigger, we have not
gained anything: the Bellman updates for each state will take k times as long, and the overall
solution time will remain unchanged. However, for most domains, the average number of
transitions per state in the uniform-k MDP will not increase significantly, so the computation
of the uniform-k policy will directly correspond to a decrease in the time needed to solve the
expanded MDP.

In addition to its use as a heuristic solution strategy, uniform-k also lets us measure how the
discretization of time affects performance. The difference between the values of the optimal
and uniform-k policies tells us how much would be lost if each time step lasted k times as
long.

4.2 The Lazy-k Heuristic

With the lazy-k heuristic, our agent ignores time and score until there are k steps remaining.
For the first h−k time steps, the lazy-k policy acts in accordance with the optimal maximize-
expected-rewards (not thresholded-rewards) policy for the base MDP M . Once there are k
steps remaining, the agent uses Algorithm 3.2 to create an optimal TRMDP M ′ with a
time horizon k and an initial state chosen to reflect the actual current state of the system
(including the cumulative intermediate reward). The agent solves M ′ and uses the optimal
thresholded-rewards solution to adopt a nonstationary policy for the remaining k time steps.
The main idea of this technique is to concentrate computational effort near the end of the
run, when the agent’s actions may have a greater effect on the overall outcome.

69

Figure 4.2 shows the lazy-30 policy for our example domain. For the first 90 time steps
(at the top of the figure), the agent acts optimally with respect to the base MDP, always
choosing the balanced action. For the remaining 30 time steps, the agent acts optimally with
respect to the expanded TRMDP. The figure shows the case where our agent happens to be
ahead by 3 points when there are 30 time steps left.

Figure 4.2: The lazy-30 policy for M with time horizon h = 120 steps.

4.3 The Logarithmic-k-m Heuristic

With this heuristic, the agent makes a number of decisions that is logarithmic in the time
horizon. The lazy-k heuristic saves computation by only considering the end of the time
horizon; the uniform-k heuristic saves computation by compressing the entire time horizon.
The logarithmic heuristic is a hybrid approach in which the time resolution becomes finer as
we approach the end of the time horizon.

For example, the agent may switch policies at every step during the final 8 steps of the run,
every two steps for the previous 16 steps of the run, every four steps for the previous 32
steps of the run, and so on. The logarithmic heuristic depends on two parameters: k, the
number of decisions the agent makes before the time resolution is increased, and m, the
multiple by which the resolution is increased. For this example, k = 8 because the agent
takes 8 actions before each increase, and m = 2 because the time resolution doubles on each

70

Figure 4.3: The logarithmic-8-2 policy for M with time horizon h = 120 steps. Only the
policy decision times are shown; at all other time steps, the last decision is maintained.

increase. Figure 4.3 shows the logarithmic-8-2 policy for our example domain. Like uniform,
the logarithmic policy has the same general form as the optimal TRMDP policy, but the
agent allocates most of its computational time (MDP states) on accurately modeling the
domain near the end of the time horizon. At the end of the game, the agent makes action
choices at every time step, but for the first half of the game the agent makes action choices
only every 8 steps. In between, there is a period of 4-step gaps and then a period of 2-step
gaps.

The logarithmic heuristic also requires Tn, the n-step transition and reward functions, which
can be computed as in the uniform heuristic. The difference between logarithmic and uniform
is on line 6 of Algorithm 3.2: rather than using a fixed n in Tn, logarithmic varies n depending
on how many time steps are remaining and the values of k and m.

4.4 Results

We tested the performance of these three heuristic techniques, for a variety of parameter
settings, on 60 different MDPs. These MDPs were chosen randomly from the 5000 MDPs
that were used in Section 3.4. Figure 4.4 summarizes the results. Each point on the graph

71

corresponds to a heuristic technique with some parameter setting. The x-axis shows the
number of states in the expanded MDP (averaged over the 60 MDPs); the y-axis shows the
mean expected true reward of that heuristic technique. Ideally, we would like a technique
that provides a high true reward with a low number of states. Points in the upper-left frontier
of the graph represent Pareto-efficient tradeoffs between state space size and expected true
reward.

Point Approach Value # States
Optimal Optimal 0.1699 43,200

B Uniform-2 0.1608 21,240
C Uniform-15 0.0957 2,544
D Lazy-80 0.1612 19,200
E Logarithmic-8-2 0.1573 15,672
F Logarithmic-2-4 0.1264 12,807

Figure 4.4: Performance of heuristic techniques on 60 randomly generated MDPs. Points in
the upper-left frontier of the graph represent Pareto-efficient tradeoffs between state space
size and expected true reward.

The optimal thresholded-rewards algorithm, labeled “Optimal” in the graph, has a mean
reward of 0.1699 and requires 43,200 states to compute. For small values of k, the uniform
heuristic closely approximates the optimal solution while significantly reducing the size of
the state space. Uniform-2, labeled “B”, has mean reward 0.1608 and requires 21,420 states.
The selection of k is a tradeoff between solution time and quality; uniform-15 (labeled “C”)
uses only 2,544 states, but the reward drops to 0.0957. Lazy-80 (labeled “D”) has mean

72

reward 0.1612 and uses only 19,200 states; this is fewer states than uniform-2 and a higher
mean reward. In general, the lazy heuristic consistently has a higher reward than uniform
at a given state space size. Logarithmic-8-2, labeled “E”, closely matches the performance
of lazy-k; however, logarithmic-2-4 (labeled “F”) performs much worse than both lazy and
uniform. In general, the performance of logarithmic seems highly parameter-dependent, and
in no case does logarithmic significantly outperform lazy at a given state space size.

Of the heuristics introduced in this chapter, lazy consistently offers the best tradeoff in terms
of solution time and quality, which seems to indicate that acting optimally is most important
near the end of the time horizon. In fact, we can provide some support for this intuition.
Specifically, consider a policy called “Optimal-except-k”. With this policy, our agent acts
optimally (according to the optimal thresholded-rewards policy), except at a single time
step, k. At time step k, the agent instead acts according to the optimal maximize-expected-
rewards action (balanced). We evaluate this policy and compute the loss (decrease in expected
value) compared to optimal. Figure 4.5 shows the loss for each possible value of k. This
figure shows that acting suboptimally near the end of the time horizon (when k is close to 0)
causes a much greater loss than acting suboptimally near the beginning of the time horizon
(when k is close to 120.)

Figure 4.5: The amount of expected value lost if an agent acts optimally except at a single
time step k, where k = 0 is the final time step.

73

4.5 Summary

In this chapter, we introduced three heuristic techniques that find approximately optimal
policies for thresholded-rewards MDPs. These heuristics trade off computation time with
solution quality, achieving performance close to the optimal solution while using significantly
less computation time. With the uniform-k heuristic, our agent adopts a nonstationary policy
but only considers changing its policy every k time steps. This heuristic “compresses” the
time horizon uniformly by a factor of k, directly leading to a decrease in the state space of
the expanded MDP. With the lazy-k heuristic, our agent ignores time and score until there
are k steps remaining. The lazy-k heuristic concentrates computational effort near the end
of the run, when the agent’s actions may have a greater effect on the overall outcome. With
the logarithmic-k-m heuristic, the agent makes a number of decisions that is logarithmic
in the time horizon. The logarithmic-k-m heuristic is a hybrid approach in which the time
resolution becomes finer as we approach the end of the time horizon. Of these three heuristics,
the lazy-k heuristic consistently has the highest performance at a given state space size.

74

Chapter 5

TRMDPs with Arbitrary Reward
Distributions

In Chapter 3, we introduced TRMDPs, which find a policy that maximizes the probability of
achieving a specified amount of reward in timed domains. With the TRMDP model applied
to the robot soccer domain, each state-action pair has a fixed probability that a goal will
be scored by one team or the other. This implies that, as long as the system remains in a
given state, the amount of time taken to score is drawn from a geometric distribution. For
many games, including robot soccer and CTF, this assumption is inaccurate. For example,
even if the ball is very close to the goal in robot soccer, it may take a significant amount
of time for the attacking robot to score or for the defending goalkeeper to clear the ball to
safe territory. We therefore propose that, in rich domains, it is more accurate to include
semi-Markov actions, which are temporally extended and may take multiple time steps to
complete. In this chapter, we augment TRMDPs by adding semi-Markov actions, thereby
introducing thresholded-rewards semi-Markov Decision Processes (TRSMDPs). TRSMDPs
model thresholded-rewards domains in which the time needed for a state transition or reward
assignment follows any arbitrary distribution.

Section 5.1 presents our formal definition of TRSMDPs. Section 5.2 presents an optimal
solution algorithm for TRSMDPs. Section 5.3 presents our CTF results, including the time-
to-score distributions for each combination of CTF plays, the optimal TRSMDP policies
against each opponent play in the CTF domain, and empirical evaluations of these policies.
Section 5.4 presents results with our real robot soccer team, including time-to-score distribu-
tions of two different plays and the optimal TRSMDP policy against a static opponent. In
Section 5.5, we use an MDP-based approach to derive optimal policies for the CTF domain,

75

and empirically compare the effectiveness of the resulting policies with the SMDP-based
approach. Section 5.6 introduces the threshold-plus-linear-k objective function, which trades
off between maximizing the probability of winning and maximizing the margin of victory.

5.1 Definitions

Similarly to Chapter 3, we represent an SMDP as a tuple (S,A, T, s0). The transition
function T is augmented to describe the probability distribution over the next state, the
amount of reward achieved, and the amount of time it takes for the transition to occur. In
the robot soccer and CTF domains, we measure the transition functions empirically, building
a model of each domain’s transition dynamics offline. During this offline phase, our team
repeatedly chooses an action from some given state; after each action, we observe the next
state, the amount of time elapsed, and the reward received. Formally, given a state/action
pair (s, a) as input, the world produces an outcome (s′, dt, r). Given many such outcomes
for each possible state/action pair, we generate an estimated transition function T̂ . T̂ (s, a)
returns a list of tuples of the form (p, s′, dt, r), where p is the probability of transitioning
to state s′ after dt time steps, receiving reward r, when action a is executed in state s.
A thresholded-rewards SMDP (TRSMDP) is defined by the tuple (M, f, h), where M is an
SMDP, f is the reward threshold function, and h is the time horizon.

5.2 TRSMDP Optimal Solution Algorithm

Algorithm 5.1 is a function that computes the value of a given state (s, t, ir) of a TRSMDP via
a straightforward recursive computation of the standard Bellman equation [69]. In addition,
this function also returns the optimal action selection for this state. Algorithm 5.1 takes
in a state s ∈ S, the time remaining t, the cumulative intermediate reward ir, the set of
actions A, the transition function T , and the reward threshold function f .

If there is no time left, the value of this state is the result of calling the threshold function
with the amount of cumulative intermediate reward (lines 2–3). There is no “best action”
to return since it is not possible to take another action when there is no time remaining.

Otherwise, the algorithm computes the value of each action and finds which action has
the greatest value (lines 4–18). To compute the value of an action, the algorithm finds all
possible transitions (line 8) and sums up the values of the resulting states, multiplied by
the probability of that transition occuring (lines 8–15). On line 9, the algorithm computes

76

Algorithm 5.1 Computes the value of a given state of a TRSMDP.

1: function StateValue(s, t, ir, A, T, f):
2: if t = 0 then
3: return (f(ir), None)
4: best action ← None
5: best action value ← −∞
6: for a ∈ A do
7: action value = 0
8: for (p, s′, dt, r) ∈ T (s, a) do
9: t′ ← t− dt

10: if t′ < 0 then
11: t′ ← 0
12: ir′ ← ir
13: else
14: ir′ ← ir + r
15: action value ← action value + p × StateValue(s′, t′, ir′, A, T, f)
16: if action value > best action value then
17: best action ← a
18: best action value ← action value
19: return (best action value, best action)

the new time remaining t′ by subtracting the transition time dt from the previous time
remaining t. It might be the case that dt, the amount of time needed for the transition to
occur, is greater than t, the amount of time remaining before the time horizon. In this case,
t′ < 0, and the action does not actually complete before the time horizon ends. Therefore
no additional intermediate reward is received. Lines 10–12 handle the case where t′ < 0.
Otherwise, the algorithm adds the reward to our cumulative intermediate reward as usual
(lines 13–14). Line 15 is the recursive step; the action’s value is increased by the probability
p of the transition occurring multiplied by the value of the new state (s′, t′, ir′). If a’s value
is higher than any other action seen so far, we set a to be the best action and store its value
as the best action value seen so far (lines 16–18). After iterating over all actions, we return
the best action and its value (line 19).

As presented, Algorithm 5.1 is computationally inefficient: the recursive call to StateValue
on line 15 gets called with the same exact arguments repeatedly, because each state (s′, t′, ir′)
is potentially the successor state of many other states. Each repeated call to StateValue
with the same arguments recomputes the results each time. A significant performance gain
is achieved by using the well-known technique of memoization. We simply keep a cache
that maps (s, t, ir, A, T, f) tuples to (best value, best action) tuples. If StateValue is

77

called with an (s, t, ir, A, T, f) tuple that is already in the cache, StateValue returns the
precomputed value and optimal action immediately; otherwise StateValue computes the
value using the algorithm given above and stores the result in the cache for future use. For
all results presented in this thesis, we used memoization; the number of entries needed in
the cache was small enough that the entire cache easily fit in memory (taking up less than
80MB of RAM in all cases).

Algorithm 5.1 only computes the value and optimal action for a single state; by itself,
it does not provide a complete policy for a TRSMDP (M, f, h). However, the memoized
version does compute the entire policy. Assuming that the transition function T is exact,
the memoized computation of StateValue(s0, h, 0, A, T, f) recursively computes the value
of every reachable state (s, t, ir), storing the value and the optimal action of each reachable
state in the cache. The cache can then be saved to disk so that the optimal policy is available
at runtime.

However, in both the CTF and robot soccer domains, we use an estimate T̂ of the transition
function which is found empirically, by playing multiple games and keeping track of all
the transitions seen. Therefore, at runtime the agent could potentially end up in a state
(s, t, ir) which is “impossible” given the estimated transition function T̂ but which is in fact
possible with the domain’s true transition function T (which is unknown). Assuming that the
estimated transition function is fairly accurate, there should be relatively few “impossible”
states. However, to ensure that every state reachable at runtime has an optimal action
computed, we just need to make sure to call StateValue(s, t, ir, A, T, f) for every value
of s, t, and ir. Algorithm 5.2 achieves this with a simple nested loop over all possible
(s, t, ir) values. If there are relatively few “impossible” states, this entire loop will not
take significantly more computation time than simply computing the value of the initial
state (s0, h, 0). For example, in the CTF experiments presented in the following section,
computing the entire policy takes approximately 3.8 times longer than computing the value
of the initial state.

Algorithm 5.2 requires the enumeration of all possible intermediate reward values. As in
Chapter 3, we could assume that the reward at each time step grows by the maximum-
magnitude single-step intermediate reward. Then, the possible intermediate reward values
in a 2000-step CTF game are bounded by [−2000, 2000]. However, SMDPs often allow a
stronger assumption that limits the number of possible intermediate reward values further.
For example, in the CTF domain with a 72×48 world, at least 53 steps are required in order
to score a point: the flag is initially 26 squares away from midfield, so in order to score, a
player must make at least 26 MoveActions toward the flag, one PickupAction to pick up the
flag, and 26 more MoveActions to successfully carry it back to the home zone. Therefore,
in a CTF game of 2000 time steps, the maximum number of scores is upper bounded by

78

Algorithm 5.2 Computes the optimal policy for every state of a TRSMDP.

1: Given: SMDP M = (S,A, T, s0), threshold function f , time horizon h:
2: for s ∈ S do
3: for t ∈ {0, 1, . . . h} do
4: for ir ∈ { all possible values of cumulative intermediate reward } do
5: π(s, t, ir)← V (s, t, ir, A, T, f)
6: return π

b2000/53c = 37, which gives a much tighter bound on the possible values of ir.

5.3 TRSMDPs Applied to the CTF Domain

In this section, we apply the TRSMDP solution algorithm to find optimal policies for the
CTF domain. Section 2.2 presents full details of the CTF domain. In order to find an
optimal policy for the CTF domain, we need to model the domain as an SMDP (S,A, T, s0).
Since we are primarily interested in modeling strategic decisions and the effects of team
actions, our set of actions A is the 11 team-level CTF plays introduced in Section 2.2.3. We
analyze these plays in Section 5.3.1. To highlight the effects of team strategies further, we
choose to represent the CTF domain as containing only a single state. Our main concern
is then the transitions: given our choice of play and the opponent’s choice of play, what is
the distribution of scores? Since CTF is a two-player game, the transition function T (s, a)
takes as input the joint action a = (ab, ar) chosen by the blue and red teams, respectively.
Since CTF is a timed, zero-sum domain, the evaluation of each play combination depends
on the number of points scored by each team, and in the distribution of the amount of time
it takes to achieve a score. Section 5.3.2 discusses these time-to-score distributions in detail.
Section 5.3.3 ties these results together and presents the optimal TRSMDP policies for the
CTF domain. There is one optimal policy in response to each of the possible opponent plays.
Finally, Section 5.3.4 tests these optimal policies empirically, by playing each optimal policy
against its associated opponent play.

Throughout this chapter, we assume that the opponent is playing a single play throughout
the entire game, and that we have perfect knowledge of which play the opponent is playing.
(We relax these assumptions in the next chapter.)

79

5.3.1 Finding Good CTF Plays

In Section 2.2.3, we introduced the eleven plays which are used in all of our CTF experiments.
To judge the usefulness of these eleven plays, we perform a preliminary test in which each play
is played against each other play, for a total of 121 play combinations. Each play combination
was tested out for 500 games; each game is 2000 time steps long. For each combination, we
recorded the number of wins achieved by each team and the total cumulative score achieved
by each team over the 500 games. The full results of these games are presented in Section B.1
in Appendix B; in this section, we highlight a selection of the full results.

We apply iterated dominance [18] to eliminate plays which are strictly worse against all of
the other possible plays, because it is unlikely that a team would ever choose to utilize such
a play. Formally, we say that a play p1 is Pareto dominated by play p2 if, for every possible
opponent play p3:

• Our team scores more points when playing p2 rather than p1, and

• The opponent scores fewer points when our team plays p2 rather than p1.

Any play which is Pareto dominated by some other play can be removed from further con-
sideration, since there is no situation in which a rational team would use that play.

As an example, we compare the performance of the plays A0 M0 D5 and A0 M1 D4, which
can be qualitatively considered the “most defensive” plays since neither play assigns any
attackers. Table 5.1 shows the number of points scored by the opposing team for each play
combination. Note that, for every opponent play, the opponent scores more points against
A0 M0 D5 than against A0 M1 D4. Since neither play assigns attackers, our team never scores
any points with either play. Therefore, A0 M0 D5 is Pareto dominated by A0 M1 D4. There
is no situation in which a rational team would ever choose to play A0 M0 D5, so we remove
A0 M0 D5 from consideration.

As a further example, Table 5.2 compares A4 M0 D1 and A4 M1 D0 in a similar fashion. The
table shows that, for nearly every opponent play, our team scores more points, and gives up
fewer opponent points, if our team plays A4 M1 D0 rather than A4 M0 D1. The only opponent
play for which this is not the case is A0 M0 D5; however, we have already shown that there
is no situation in which a rational opponent would choose to play A0 M0 D5. Therefore,
there is no plausible situation in which we would choose to play A4 M0 D1, so we also remove
A4 M0 D1 from consideration.

If we analyze all pairs of plays in this fashion, it turns out that every play with k attackers,

80

Our Play Opponent Play Our Points Opponent Points

A0 M0 D5 A0 M0 D5 0 0
A0 M1 D4 A0 M0 D5 0 0

A0 M0 D5 A0 M1 D4 0 0
A0 M1 D4 A0 M1 D4 0 0

A0 M0 D5 A1 M0 D4 0 104
A0 M1 D4 A1 M0 D4 0 37

A0 M0 D5 A1 M1 D3 0 65
A0 M1 D4 A1 M1 D3 0 32

A0 M0 D5 A2 M0 D3 0 171
A0 M1 D4 A2 M0 D3 0 126

A0 M0 D5 A2 M1 D2 0 557
A0 M1 D4 A2 M1 D2 0 306

A0 M0 D5 A3 M0 D2 0 814
A0 M1 D4 A3 M0 D2 0 557

A0 M0 D5 A3 M1 D1 0 774
A0 M1 D4 A3 M1 D1 0 559

A0 M0 D5 A4 M0 D1 0 996
A0 M1 D4 A4 M0 D1 0 767

A0 M0 D5 A4 M1 D0 0 982
A0 M1 D4 A4 M1 D0 0 771

A0 M0 D5 A5 M0 D0 0 1208
A0 M1 D4 A5 M0 D0 0 996

Table 5.1: Pareto-dominance analysis of two CTF plays: A0 M0 D5 and A0 M1 D4.

0 midfielders, and 5− k defenders is Pareto dominated by the play with k attackers, 1 mid-
fielder, and 4 − k defenders. In other words, if a play assigns a defender but no midfielder,
the play which replaces one defender with a midfielder is better.

The only good play containing no midfielders is A5 M0 D0, in which all players become at-
tackers; this is the best play in response to a opponent play which assigns no attackers, such
as A0 M1 D4. Of the eleven total plays, only six of them are feasible according to our Pareto-
dominance analysis: A0 M1 D4, A1 M1 D3, A2 M1 D2, A3 M1 D1, A4 M1 D0, and A5 M0 D0. We
consider only these six plays throughout the remainder of this document.

81

Our Play Opponent Play # Points For # Points Against

A4 M0 D1 A0 M0 D5 1048 0
A4 M1 D0 A0 M0 D5 963 0

A4 M0 D1 A0 M1 D4 713 0
A4 M1 D0 A0 M1 D4 745 0

A4 M0 D1 A1 M0 D4 2207 2832
A4 M1 D0 A1 M0 D4 2586 846

A4 M0 D1 A1 M1 D3 359 3320
A4 M1 D0 A1 M1 D3 484 1089

A4 M0 D1 A2 M0 D3 1997 4530
A4 M1 D0 A2 M0 D3 2419 1757

A4 M0 D1 A2 M1 D2 485 5380
A4 M1 D0 A2 M1 D2 1048 2165

A4 M0 D1 A3 M0 D2 2397 5325
A4 M1 D0 A3 M0 D2 3615 1995

A4 M0 D1 A3 M1 D1 863 6340
A4 M1 D0 A3 M1 D1 1872 2433

A4 M0 D1 A4 M0 D1 4586 4499
A4 M1 D0 A4 M0 D1 6955 1055

A4 M0 D1 A4 M1 D0 1100 6902
A4 M1 D0 A4 M1 D0 2571 2594

A4 M0 D1 A5 M0 D0 6502 3442
A4 M1 D0 A5 M0 D0 8730 743

Table 5.2: Pareto-dominance analysis of two CTF plays: A4 M0 D1 and A4 M1 D0.

5.3.2 CTF Time-To-Score Distributions

In order to find the optimal policy for Capture the Flag, we need an accurate estimate
T̂ of the domain’s transition function T (s, a). T (s, a) returns a list of tuples of the form
(p, s′, dt, r), where p is the probability of transitioning to state s′ after dt time steps, with
reward r, when action a is executed in state s. Since we are modeling the domain as having
only a single state s0 (see Section 5.3), we need to measure the probability distribution of r
(the scores for or against our team) and dt (the amount of time each score requires) for every
possible joint action a = (ab, ar). We call these probability distributions the time-to-score
distributions. Since each team is equipped with six different plays, there are 36 different

82

joint actions, and 36 different time-to-score distributions that must be measured.

To measure the time-to-score distribution for a joint action a = (ab, ar), we ran the Capture
the Flag simulator for many time steps, with the blue team playing ab and the red team
playing ar. We recorded each score as it occurred, along with the amount of time elapsed
since the last score. The end result is a list La of na outcomes, where each outcome is a
tuple (r, dt) of reward and time elapsed. We use this empirical distribution directly in our
estimate of the transition function: if an outcome (r, dt) appears k times in La, then T̂ (s0, a)
contains the tuple (k/na, s0, dt, r).

By convention, reward values of 1 and −1 correspond to scores by the blue and red team,
respectively. If the simulator ran for over 2000 time steps without a point being scored, this
means that this particular outcome could not lead to a score in an actual game, since games
are 2000 time steps long. We therefore recorded the outcome (0,∞), indicating that no point
was scored and the amount of time elapsed was effectively infinite. The simulator was then
reset back to its initial state (as though a point were scored) and the simulator continued to
record data.

To generate the time-to-score distributions used in the rest of this thesis, all 36 play combi-
nations were tested for 40 million steps each. 40 million time steps is equivalent to 20000 full
games of 2000 time steps; this generated enough data to ensure that the estimated transition
function T̂ very closely matches the true transition function T .

(a) Time-to-score distribution for the blue team. (b) Time-to-score distribution for the red team.

Figure 5.1: Cumulative time-to-score distributions for (a) the blue team and (b) the red
team when the blue team plays A2 M1 D2, for each possible red play.

83

(a) Time-to-score distribution for the blue team. (b) Time-to-score distribution for the red team.

Figure 5.2: Cumulative time-to-score distributions for (a) the blue team and (b) the red
team when the blue team plays A2 M1 D2, for each possible red play. This is the same data
as Figure 5.1, with the y-axis zoomed in to highlight the differences between plays.

(a) Time-to-score distribution for the blue team. (b) Time-to-score distribution for the red team.

Figure 5.3: Instantaneous time-to-score distributions for (a) the blue team and (b) the red
team when the blue team plays A2 M1 D2, for each possible red play. This is the same data
as Figure 5.2, but plotted as an (unnormalized) probability mass function rather than as a
cumulative distribution function.

84

(a) Time-to-score distribution for the blue team. (b) Time-to-score distribution for the red team.

Figure 5.4: Cumulative time-to-score distributions for (a) the blue team and (b) the red
team when the blue team plays A3 M1 D1, for each possible red play.

(a) Time-to-score distribution for the blue team. (b) Time-to-score distribution for the red team.

Figure 5.5: Instantaneous time-to-score distributions for (a) the blue team and (b) the red
team when the blue team plays A3 M1 D1, for each possible red play. This is the same data
as Figure 5.4, but plotted as an (unnormalized) probability mass function rather than as a
cumulative distribution function.

85

Figure 5.1 shows the time-to-score distributions for (a) the blue team and (b) the red team
when the blue team plays A2 M1 D2, for each possible red play. The x-axis shows the amount
of time elapsed t and the y-axis shows the number of points scored by the appropriate team
in time ≤ t. (These graphs essentially show the cumulative distribution function of each
team’s time-to-score, except that the probabilities have not been normalized to 1. By not
normalizing to 1, we highlight the difference in number of goals scored for each team in each
play combination.) Figure 5.1(a) shows that the blue team scores 320,087 points when red
plays A5 M0 D0, and that these points are scored very quickly—the median time elapsed for
a blue score is 109 time steps, and the 90th percentile is 156 time steps. The blue team’s
high scoring makes intuitive sense: since the red play assigns no defenders at all, it should
be quite easy for the blue team to score. If red plays A4 M1 D0 instead, the single midfielder
makes it significantly harder for blue to score. Blue scores 82,249 points when red plays
A4 M1 D0, and the median time-to-score is 249 time steps (90th percentile: 372 time steps).

When the red team plays A5 M0 D0, the number of points scored by the blue team is approx-
imately four times greater than for any other case. It is therefore difficult to distinguish the
difference between the other plays in Figure 5.1. Figure 5.2 shows the same exact data as
Figure 5.1, but with the y-axis zoomed in, so that the differences between plays are shown
more clearly. Figure 5.2(a) shows that, as the red team adds more defenders, the number of
points scored by the blue team decreases and the amount of time needed to score increases.
However, there is not a significant difference in blue’s score between red’s plays A1 M1 D3

and A0 M1 D4.

Figure 5.2(b) shows the time-to-score distribution for the red team, when the blue team
plays A2 M1 D2, for each possible red play. When red plays A4 M1 D0, the red team scores
41,481 points, and the median time-to-score is 276 time steps (90th percentile: 468 time
steps). Figure 5.2(b) generally shows that as the red team uses more attackers, the number
of scores made by red increases. However, there is one exception: the red team scores fewer
points when playing A5 M0 D0 (11,666) than when playing A4 M1 D0 (41,481). This reduction
in score can be explained by the fact that in this case, red has no defenders at all; therefore
blue’s two attackers can easily capture red’s flag. The only way red can score is if red’s five
attackers capture blue’s flag (defended by a blue midfielder) faster than blue captures red’s
undefended flag. Even though red scores fewer points overall with A5 M0 D0, most of the
points that are scored happen more quickly than for any other choice of red play (median:
110 time steps, 90th percentile: 210 time steps). Therefore, it still might make sense for
red to play A5 M0 D0 if red is behind and there is very little time left in the game. In the
next section, we present the optimal policies for CTF; these policies will show that that
there are indeed cases in which the optimal action is A5 M0 D0. Figure 5.2 further shows
that the time-to-score curves for the blue team and the red team are almost identical when
the red team plays A2 M1 D2; since both blue and red are playing the same play, these two

86

distributions are nearly identical.

Figure 5.3 shows the same data as Figure 5.2 (the time-to-score distributions for each team
when the blue team plays A2 M1 D2), but plotted as an (unnormalized) probability mass
function, rather than as a cumulative distribution function. That is, for each value of t on
the x-axis, the y-axis gives the number of goals scored by the given team in time exactly
equal to t. For example, we can see from this graph that, when the red team plays A4 M1 D0,
the blue team scores most of its goals in the range of 250–300 seconds (though there is
another peak earlier, at approximately t = 100.) As the red team chooses more defensive
plays, the blue team scores fewer goals, and each goal generally takes longer. When the red
team plays A5 M0 D0, the blue team scores over 7000 goals at approximately t = 100. The
lines for red’s choice of A5 M0 D0 have therefore been removed from the graphs; otherwise
the scale of the y-axis would make it impossible to distinguish the other lines.

Figures 5.4 and 5.5 show the same data as Figures 5.2 and 5.3, but with the blue team
playing A3 M1 D1 instead of A2 M1 D2. The differences between A3 M1 D1 and A2 M1 D2 are
mostly straightforward: against any given red play, blue scores more points with A3 M1 D1,
but also gives up more points to the opponent. One interesting result is that blue scores
significantly more points against A0 M1 D4 than against A1 M1 D3, even though A0 M1 D4

assigns more red defenders. There are two reasons that contribute to this result: 1) the
amount of additional protection afforded by adding one more defender is minimal and 2)
the presence of an attacker in A1 M1 D3 means that red has the opportunity to score points,
and if both blue and red are carrying the flag but red scores first, blue is prevented from
achieving a score.

We have shown here just a sample of the time-to-score distributions—two different plays for
the blue team against all six possible plays for red. Section B.2 in Appendix B shows the
complete time-to-score data for all 36 combinations of blue and red plays.

5.3.3 CTF Optimal Policies

In this section, we present the optimal policies against each of the six possible opponent
plays. These policies are computed by the TRSMDP optimal solution algorithm presented
in Section 5.2, given the time-to-score distributions measured in the previous section.

Figure 5.6 shows the optimal policy for the CTF domain, assuming that the opponent plays
A2 M1 D2 for the entire game. The y-axis shows the number of time steps remaining; the x-
axis shows the cumulative intermediate reward (score difference). The colored areas show the

87

Figure 5.6: The optimal policy for the CTF domain, assuming that the opponent plays
A2 M1 D2 for the entire game. The y-axis shows the number of time steps remaining; the
x-axis shows the cumulative intermediate reward (score difference).

optimal action for every possible combination of time remaining and intermediate reward.1

This policy has an expected reward of 0.1307. If our team follows this policy, we expect that
P (winning)− P (losing) = 0.1307.2

Qualitatively, the optimal policy chooses A2 M1 D2 as long as the game is tied. If our team is
winning by one or more points, the optimal policy is to choose a more defensive play: usually
A1 M1 D3, but possibly A0 M1 D4 if our team has a very big lead or if it is very close to the end
of the game. For example, our team will play A0 M1 D4 if we are ahead by four or more points
with 500 time steps remaining. If our team is losing by a point or two early in the game, our
team continues to play A2 M1 D2, but if our team is losing by a significant amount or if it is
very close to the end of the game, we will play a more aggressive play such as A4 M1 D0 or

1Note that our team can switch plays at any point, not only after a point has been scored.
2Note that, compared to Figure 3.3, which shows the optimal policy for the MDP M presented in

Chapter 3, the axes in Figure 5.6 are significantly distorted. Figure 3.3 is 120 time steps “tall” and 120
intermediate-reward values “wide” in each direction, while Figure 5.6 is 2000 time steps “tall” and only 37
units “wide” since the maximum number of scores possible in a 2000-step CTF game is 37 (as discussed in
Section 5.2).

88

A5 M0 D0. For example, our team will play A4 M1 D0 if behind by one point with 500 time
steps remaining or if behind by two points with 900 time steps remaining. There are very
few states in which A3 M1 D1 is the optimal play selection; the optimal policy switches from
A2 M1 D2 immediately to A4 M1 D0 when the team is losing. As the time remaining decreases,
the score difference needed to switch from A2 M1 D2 to a more defensive or aggressive play
decreases.

As in Figure 3.3, there are “Don’t Care” regions in the lower-left and lower-right of Figure 5.6.
These are states from which the actions of the agent no longer have any effect on the outcome,
because it is impossible for either team to score enough points to change the eventual outcome
(remember from Section 5.2 that at least 53 time steps must occur in between each score.)
In these regions, all actions have equal expected value, so the team can choose any play.

Figure 5.7: The optimal policy for the CTF domain, assuming that the opponent plays
A3 M1 D1 for the entire game. The y-axis shows the number of time steps remaining; the
x-axis shows the cumulative intermediate reward (score difference).

Figure 5.7 shows the optimal policy for the CTF domain, assuming that the opponent plays
A3 M1 D1 for the entire game. This policy has an expected reward of 0.5320. Again, the
optimal policy is to play A2 M1 D2 as long as the game is tied. If our team is winning, our
team may switch to a more defensive play; if our team is losing, our team may switch to a
more offensive play. Compared to playing against A2 M1 D2, our team needs to be winning

89

or losing by more (at a given time step) to switch from A2 M1 D2 to some other play. Also,
there is a narrow range of score/time values for which A3 M1 D1 is the optimal play. This
policy makes significant use of all six plays available to our team.

The optimal policies against the other four possible opponent plays are presented in Sec-
tion B.3 of Appendix B. Table 5.3 shows the value of the optimal policies against each of the
six possible opponents. In each case, the values are positive, meaning that we expect to win
more games than we lose. The lowest value in the table is when we play against A1 M1 D3.
This value is low because A1 M1 D3 is a very effective defensive play. Assuming that the score
of the game is tied, the optimal play in response is A2 M1 D2; however, on average A2 M1 D2

only scores 0.517 points per game against A1 M1 D3. Therefore, games against A1 M1 D3 will
be very low-scoring; a majority of these games end in 0–0 or 1–1 ties. Despite the low scores,
we still expect that P (winning)−P (losing) is about 6% when the opponent plays A1 M1 D3.
As stated above, the value of the optimal policy against A2 M1 D2 is 0.1307; against every
other play, the value of the optimal policy is quite large (above 0.5).

Opponent Play Value
A0 M1 D4 0.8179
A1 M1 D3 0.0592
A2 M1 D2 0.1307
A3 M1 D1 0.5320
A4 M1 D0 0.6286
A5 M0 D0 0.9998

Table 5.3: Values of the optimal policies against each of the six possible opponents. These
values are computed theoretically, using Algorithm 5.1 to find the value of the initial state.

5.3.4 Experimental Results

We empirically validate the performance of these optimal policies against each of the six
possible opponents. Our team plays 3000 CTF games against each of the six opponents,
playing the optimal policy in response to each opponent. Table 5.4 presents the results.
Each row of the table shows the number of wins, losses, and ties achieved by our team and
the measured value of playing the optimal policy: (# wins − # losses) / 3000. Table 5.5
shows score data from the same games. Each row of the table shows the mean score achieved
by our team per game, the mean score achieved by the opponent team per game, the mean
score difference per game (our score minus the opponent team’s score), and the theoretical
score difference predicted when our team follows the optimal policy.

90

Opponent Play Wins Losses Ties Value
A0 M1 D4 2465 0 535 0.8217
A1 M1 D3 935 775 1290 0.0533
A2 M1 D2 1185 946 869 0.0797
A3 M1 D1 1815 511 674 0.4347
A4 M1 D0 2035 467 498 0.5227
A5 M0 D0 2998 0 2 0.9993

Table 5.4: Results of playing 3000 CTF games against each of the six possible opponents.
Each row shows the number of wins, losses, and ties achieved by our team, and the measured
value of playing the optimal policy.

Opponent Play Our Score Opponent Score Score Diff. Predicted Score Diff.
A0 M1 D4 1.8627 0.0000 1.8627 1.6435
A1 M1 D3 0.5123 0.7630 -0.2507 -0.2349
A2 M1 D2 1.2447 1.5323 -0.2876 -0.1639
A3 M1 D1 2.3260 1.5013 0.8247 0.9413
A4 M1 D0 3.2893 1.9013 1.3880 1.5282
A5 M0 D0 17.5053 1.3910 16.1143 14.0182

Table 5.5: Results of playing 3000 CTF games against each of the six possible opponents.
Each row shows the mean score per game for our team and the opponent team, the mean
score difference per game, and the theoretical score difference predicted by the model.

Against A1 M1 D3 and A2 M1 D2, our team scores fewer points per game than the opponents,
but still achieves more wins than losses. This is because the optimal policy sacrifices expected
intermediate reward in order to maximize the probability of winning, playing conservatively
when winning and aggressively when losing. Playing conservatively when winning means that
our team does not tend to win by a large margin; playing aggressively when losing means
that our team tends to lose by a large margin. For example, against A1 M1 D3, our team
outscores the opponent by 1.04 points (on average) for each winning game; the opponents
outscore our team by 2.22 points (on average) for each losing game.

The empirical values of the policies against A0 M1 D4, A1 M1 D3, and A5 M0 D0 are very close
to the theoretical values presented in Table 5.3. Against the other three plays, the empirical
values are lower than the predicted values by 0.051 (for A2 M1 D2) to 0.106 (for A4 M1 D0).
This minor discrepancy between the theoretical and experimental values is explained by
the fact that the TRSMDP model assumes that the new time-to-score distributions take

91

effect immediately when the team decides to switch from one play to another. In reality, it
takes some time for the team members to reconfigure themselves into their new roles (e.g.,
moving to their new positions), so the gain realized by switching plays is slightly less than the
predicted value.3 The cost of switching plays can also be seen from the score data in Table 5.5;
when the opponent plays with 1–4 attackers, the predicted score difference is slightly higher
than the actual score difference. Despite this unmodeled cost of switching plays, the value
of playing the optimal policy is still positive against each opponent, indicating that there
is still a significant benefit to switching plays based on the score of the game and the time
remaining.

5.4 TRSMDPs Applied to the Robot Soccer Domain

In this section, we apply the TRSMDP solution algorithm to find an optimal policy for a game
of real robot soccer—though in a slightly simplified setting. Due to the labor-intensive nature
of gathering time-to-score distributions for robot soccer, we only consider two different plays
here. See Section 2.2 for details of the full robot soccer domain; our modifications to this
domain are presented in Section 5.4.1. Section 5.4.2 presents the time-to-score distributions
for each of the two plays. Section 5.4.3 presents the optimal policy for the robot soccer
domain.

5.4.1 Experimental Domain

For the results presented in this section, we use a domain based on the official RoboCup
Four-Legged League rules for 2008 [56]. In each experiment, two teams of three robots play
a 10-minute-long game of soccer. Both teams are from Carnegie Mellon’s CMDash’08 entry
to the RoboCup 2008 US Open, which is an improvement of the CMDash’07 team that took
third place (out of 24 teams) in the 2007 world competition [13]. Therefore, the underlying
behaviors and skills of each team are identical; the only difference between experimental
trials is the selection of plays for each team. For our experimental trials, we made the

3This cost of switching plays also has a pronounced effect in robot soccer, since a robot requires 20–
30 seconds to walk from one end of the field to the other. As a result, we designed our play system for
robot soccer to be resistant to oscillation in play choice, and to allocate roles in a manner that minimizes the
amount of time needed for team reconfiguration. Further details of these algorithms used by our robot soccer
team are presented in Appendix A. In the CTF domain, an attacker moving to defense may need about 50
time steps to move to its new position; 50 steps is 2.5% of the total game length, which is comparable to 30
seconds of robot soccer.

92

following changes to the official rules:

• Each team consisted of three field player robots (rather than four) and no goalkeepers.

• Due to the lack of goalkeepers, the illegal defender rule (which prevents the defending
team’s field players from entering the goal box) was not enforced.

• All other penalties, such as player pushing, leaving the field, and ball holding, were
enforced. In case of a penalty, the offending player(s) were picked up and moved
immediately to the halfway line (a “0-second standard removal penalty”) rather than
remaining out of play for 30 seconds as specified in the rules.

We made these changes so a single human referee could successfully judge a game. (In
competition matches, four humans are required to referee a game.)

We focus here on two separate plays: RoboCup and SuperDefense. The RoboCup play
is the default play we have generally used in previous competitions [74]. This play assigns
three roles:

• an attacker robot that chases the ball over the entire field;

• a defender robot that protects the defensive area of the field; and

• a supporter robot that stays in the offensive region of the field.

The RoboCup play is a balanced strategy that allows our team to score effectively and also
provides a reasonable defense. In contrast, the SuperDefense play assigns all three field
players to defensive roles:

• a front defender robot that covers approximately the same region as a normal defender
robot, but stands much further forward when the ball is not in the defensive half of
the field;

• a middle defender robot that covers a slightly smaller region and usually stands about
a meter behind the front defender; and

• a rear defender robot that covers the area closest to the goal and usually stands about
a meter behind the middle defender.

93

Figure 5.8 shows the regions covered by each of the roles in the two plays. Typically, when
playing SuperDefense, the front defender will immediately engage the ball when the ball
enters the defensive half of the field. If the front defender fails to clear the ball, the ball
will eventually enter the middle defender’s region; the middle defender will then join the
front defender in trying to clear the ball. If the attacking team is still able to advance
the ball forward near the goal, the rear defender joins in the defense and also attempts to
clear the ball. By employing this strategy of defense-in-depth, the SuperDefense play is
intended to make it very difficult for an opponent to successfully score a goal. However,
the SuperDefense play comes with a significant drawback; namely, it is very unlikely that
this play will ever score a goal. In a real game situation, our team would never run the
SuperDefense play for an entire game; rather, this is a strategy we would like to employ
when our team is ahead near the end of the game and we wish to prevent the opponents
from scoring an equalizer goal.

(a) RoboCup play. (b) SuperDefense play.

Figure 5.8: Regions covered by each role in each play. (a) RoboCup play. The defender’s
region is colored with dark dots; the supporter’s region is colored with diagonal lines. The
attacker’s region is the entire field. (b) SuperDefense play. The rear defender’s region
is colored with dark dots; the middle defender’s region is colored with a light checkerboard
pattern, and the front defender’s region is colored with diagonal lines.

5.4.2 Robot Soccer Time-To-Score Distributions

In this section, we aim to answer the question: do the RoboCup and SuperDefense plays
actually produce significantly different outcomes when run against an opponent team? In

94

addition, we measure the time-to-score distributions of RoboCup and SuperDefense. To
measure these distributions, our team plays a series of games against a static team configured
to use the RoboCup play. For the control case, our team also plays the RoboCup play.
For the experimental case, our team plays the SuperDefense strategy. We are interested
in seeing if the SuperDefense play leads to fewer opponent goals than RoboCup, and
also if the time between opponent goals is significantly higher for SuperDefense. Each
case is tested in 12 independent 10-minute games, for a total of 4 hours’ worth of game time.
To ensure fairness between the trials, the colors of the robots’ uniforms and the sides of the
field are swapped between each trial. The final score of each game and the time of each goal
was recorded.

When playing RoboCup against RoboCup, our team scored 35 goals in total; this is a mean
of 2.93 goals per game. The opponent team scored 42 goals in total, a mean of 3.50 goals
per game. When playing SuperDefense against RoboCup, our team scored no goals; the
opponent team scored a total of 22 goals, a mean of 1.83 goals per game. Figure 5.9 shows
a histogram of the number of goals scored by our opponents in each of the games.

Figure 5.9: Histogram of the number of goals scored per game for the two conditions. When
our team uses the SuperDefense play, the opponents score significantly fewer goals.

We test the statistical significance of the difference between the number of opponent goals
scored per game using Student’s two-tailed t-test (assuming unequal variances) and a one-
way analysis of variance (ANOVA). Both tests indicate that the number of opponent goals
scored when we play SuperDefense is significantly fewer than the number of opponent

95

Figure 5.10: Histogram of time between opponent goals. When our team uses the Su-
perDefense play, the opponents take significantly longer to score goals.

goals scored when we play RoboCup (for the t-test, p = 0.0107; for the ANOVA, F (1, 23) =
7.8571, p = 0.0104).

In addition to the number of goals scored by our opponents, we are also interested in the
time-to-score distributions: how long it takes for each team to score. We therefore calculate
the time between consecutive opponent goals in each of the games. At the end of the game,
we pessimistically assume that the opponents score immediately after the game is over,
since we do not know how long it would have taken for the opponents to score their next
goal (unless the game time remaining at the time of the last opponent goal was less than
29 seconds, which was the fastest time between goals in any trial). This leads to a mean
of 133.3 seconds between goals for the RoboCup condition, and a mean of 223.4 seconds
between opponent goals for the SuperDefense condition. Figure 5.10 shows a histogram
of the time between opponent goals for the two conditions.

We again test the statistical significance of the difference between the distributions using
Student’s two-tailed t-test (assuming unequal variances) and a one-way ANOVA. Both tests
indicate that the amount of time between opponent goals when we play SuperDefense
is significantly greater than the amount of time between opponent goals when we play
RoboCup (for the t-test, p = 0.0077; for the ANOVA, F (1, 85) = 10.7345, p = 0.0015).

96

Taken together, these results show that the SuperDefense play successfully hinders the
opponent team from scoring. Compared to RoboCup, the SuperDefense play signifi-
cantly reduces the number of goals scored by the opponent and also increases the amount of
time between opponent goals. However, the SuperDefense play completely prevents our
own team from scoring. In the next section, we present the policy which changes strategy
in order to maximize the probability of winning in the robot soccer domain.

5.4.3 Robot Soccer Optimal Policy

In this section, we present the optimal policy for the robot soccer domain. This policy is
computed by the TRSMDP optimal solution algorithm presented in Section 5.2, given the
time-to-score distributions measured in the previous section.

Figure 5.11 shows the optimal policy for the robot soccer domain, assuming that the op-
ponent plays RoboCup for the entire game. The y-axis shows the number of time steps
remaining; the x-axis shows the cumulative intermediate reward (score difference). The y-
axis ranges from 0 to 600 because our games are ten minutes long in this domain and our
time resolution is one second. The colored areas show the optimal action for every possible
combination of time remaining and intermediate reward. This policy has an expected reward
of 0.0583. If our team follows this policy, we expect that P (winning)− P (losing) = 0.0583.

The optimal policy chooses the RoboCup play if the game is tied or if our team is losing.
If our team is winning, the optimal policy is to play SuperDefense instead. In this case,
the choice to switch to SuperDefense does not depend on how much our team is winning
by, or on how much time is remaining in the game.

Compared to the CTF results, our robot soccer results are based on relatively little time-to-
score data: 22 to 42 goals per distribution, compared to over 4500 points in the lowest-scoring
CTF configuration. The time-to-score distributions we measured are a rough approximation
to the true distributions; we therefore expect that the optimal policy, and its value, might
change somewhat if we measured more data. However, the difficulties of collecting more data
for the RoboCup domain are twofold: first, these games all need to be refereed by a human,
so it is very time-consuming to run additional trials; second, the AIBO robots, while fairly
robust, are not designed to handle playing for such extended periods of time—three robots
were broken during the course of these experiments. For these same reasons, we were unable
to run the optimal policy on the real robots for extensive verification, as we did for the CTF
domain. We therefore treat the robot soccer results as a proof-of-concept demonstration of
our algorithms on our real robot soccer team. Our more exhaustive CTF results further
demonstrate that there is significant value to reasoning about score and time in complex

97

Figure 5.11: The optimal policy for the robot soccer domain, assuming that the opponent
plays RoboCup for the entire game. The y-axis shows the number of time steps remaining;
the x-axis shows the cumulative intermediate reward (score difference).

adversarial environments.

5.5 Comparison Between MDP and SMDP Approaches

Our motivation for choosing SMDPs to model the Capture the Flag domain is that the time
between state transitions (and/or reward assignments) in an MDP model is drawn from a
geometric distribution. From the time-to-score distributions presented in Section 5.3.2, it is
clear that the actual time-to-score distributions for Capture the Flag do not in fact follow a
geometric distribution. However, we have not yet shown whether modeling the time-to-score
distributions accurately actually leads to increased performance in the CTF domain. In this
section, we use an MDP-based approach to derive optimal policies for the CTF domain, and
empirically compare the effectiveness of the resulting policies with the SMDP approach.

Our domain model for the MDP approach is relatively simple. We again choose to represent
the domain as a single state. We still need to measure the probabilities of scoring a goal for

98

each of the 36 possible play combinations (ab, ar). To generate these probabilities, we use the
same data collected in Section 5.3.2, in which we ran each play combination for 40 million
time steps in the CTF simulator. For each play combination, we count the total number of
blue goals scored and red goals scored, and divide each number by 40 million to find the
per-step probability of scoring a goal for each team. Formally, if the blue team scored x
goals and the red team scored y goals when (ab, ar) was played, the reward distribution is
as follows:

R(s0, (ab, ar)) =

+1 (p = x

40000000
)

−1 (p = y
40000000

)

0 (p = 1− x+y
40000000

)

(5.1)

Given the reward distributions, we run the TRMDP solution algorithm (presented in Chap-
ter 3) to find optimal policies against each possible opponent play. Figure 5.12(a) shows
the optimal policy for the CTF domain, assuming that the opponent plays A2 M1 D2 for
the entire game. The y-axis shows the number of time steps remaining; the x-axis shows
the cumulative intermediate reward (score difference). The colored areas show the op-
timal action for every possible combination of time remaining and intermediate reward.
This policy has an expected reward of 0.1277. If our team follows this policy, we expect
that P (winning) − P (losing) = 0.1277. For comparison, Figure 5.12(b) shows the optimal
TRSMDP policy against A2 M1 D2 (this figure is identical to Figure 5.6).

(a) Optimal MDP policy. (b) Optimal SMDP policy.

Figure 5.12: Optimal policies for the CTF domain, assuming that the opponent plays
A2 M1 D2 for the entire game. (a) Optimal policy generated by using an MDP as the base
model. (b) Optimal policy generated by using an SMDP as the base model.

99

The MDP policy has the same general form as the SMDP policy, but a close look reveals
significant differences. The MDP policy is more conservative than the SMDP policy, requiring
a greater score difference to change from A2 M1 D2 to a more conservative or aggressive play.
For example, when there are 500 time steps remaining, the SMDP policy will play A4 M1 D0

if our team is losing by a single point, but the MDP policy will play A2 M1 D2 only if our
team is losing by two or more points. A similar trend is seen when winning as well: when
there are 500 time steps left, the SMDP policy will play A0 M1 D4 if our team is winning by
four or more points, but the MDP policy will play A0 M1 D4 only if our team is winning by
five or more points.

Opponent Play TRMDP Value TRSMDP Value
A0 M1 D4 0.8412 0.8179
A1 M1 D3 0.0653 0.0592
A2 M1 D2 0.1278 0.1307
A3 M1 D1 0.5231 0.5230
A4 M1 D0 0.6227 0.6286
A5 M0 D0 1.0000 0.9998

Table 5.6: Theoretically-computed values of the optimal policies against each of the six
possible opponents.

Opponent Play Wins Losses Ties TRMDP Value TRSMDP Value
A0 M1 D4 2389 0 611 0.7963 0.8217
A1 M1 D3 841 774 1385 0.0223 0.0533
A2 M1 D2 1095 927 978 0.0560 0.0797
A3 M1 D1 1835 614 551 0.4070 0.4347
A4 M1 D0 2053 515 432 0.5127 0.5227
A5 M0 D0 2999 0 1 0.9997 0.9993

Table 5.7: Results of playing 3000 CTF games against each of the six possible opponents.
Each row shows the number of wins, losses, and ties achieved by our team, and the measured
value of playing the optimal TRMDP and TRSMDP policies.

Table 5.6 shows the theoretically-computed values of the optimal policies against each of the
six possible opponents for both the MDP and SMDP models. The values are generally close,
and neither approach consistently provides a higher value. However, these models are only
approximate—especially the MDP model, which implicitly assumes that the time-to-score
distributions are geometric. What we are really interested in is the empirical performance of

100

the two different approaches—how well each approach does in practice. To test the perfor-
mance of the TRMDP approach, we ran 3000 CTF games against each of the six opponents,
playing the optimal TRMDP policy in response to each opponent. Table 5.7 presents the re-
sults. Each row of the table shows the number of wins, losses, and ties achieved by our team
and the measured value of playing the optimal TRMDP policy: (# wins − # losses) / 3000.
For comparison, the empirical values of the TRSMDP policies are also shown; these values
are identical to those shown in Table 5.5. Table 5.7 shows that the TRSMDP approach
outperforms the TRMDP approach for every opponent play. Though the absolute difference
between the values is relatively small, the percentage difference is relatively large for the
opponents which are difficult to beat (A1 M1 D3 and A2 M1 D2). The SMDP approach allows
for increased accuracy in modeling the true time-to-score distributions of the Capture the
Flag domain, which leads to better empirical performance against each opponent.

5.6 Threshold-Plus-Linear Objective Function

All the results previously presented in this thesis utilize the zero-sum threshold function
(Equation 3.1). We have argued that the zero-sum threshold function is the best objective
function for a team that desires to maximize the probability of winning (rather than max-
imizing the score difference). However, in some real-world situations (such as a qualifying
round for a tournament), winning is of primary importance, but winning by a large margin
is also desired. In such domains, we desire an objective function that is a mix of a threshold
function and a function that is linear in the score difference. In this section, we consider one
example of such an objective function, applied to the Capture the Flag domain.

We define the threshold-plus-linear-k (TPL-k) objective function as follows:

rtrue =

k + rintermediate − 1 if rintermediate > 0

0 if rintermediate = 0

−k if rintermediate < 0.

(5.2)

In this scenario, a loss counts as −k reward (regardless of the magnitude of the loss) and a
tie counts as 0 reward. A win by a single point counts as k reward, with an additional point
of reward assigned for each additional point in the margin of victory. k trades off between
the value of winning and the value of the margin of victory. If k is large, winning is weighted
heavily; if k is small, the margin of victory is weighted heavily.

Given the CTF time-to-score distributions and the TRSMDP solution algorithm, we can find
optimal policies for the threshold-plus-linear-k objective function. Figure 5.13(a) shows the

101

(a) Threshold-plus-linear-1 threshold function. (b) Threshold-plus-linear-5 threshold function.

(c) Threshold-plus-linear-10 threshold function. (d) Zero-sum threshold function.

Figure 5.13: Optimal CTF policies against A2 M1 D2 with the threshold-plus-linear-k thresh-
old functions.

102

optimal policy for the CTF domain with the TPL-1 objective function, assuming that the
opponent plays A2 M1 D2 for the entire game. Figures 5.13(b) and 5.13(c) show the optimal
policies with the TPL-5 and TPL-10 objective functions, respectively. Figure 5.13(d) shows
the optimal policy against A2 M1 D2 with the zero-sum threshold function (this figure is
identical to Figure 5.6, and is presented again here for comparison to the other policies).

One consistent difference between the optimal zero-sum policy and the optimal TPL-k poli-
cies is that none of the TPL-k policies have a “Don’t Care” region in the lower right. With
the zero-sum threshold function, this region corresponds to states in which winning is guar-
anteed (according to the model) and therefore every action is equally valuable. However,
when a win is guaranteed, the threshold-plus-linear objective function still values maximiz-
ing the score difference, so the optimal action is the play which maximizes expected score
difference (A2 M1 D2).

The TPL-1 policy puts an extreme value on the margin of winning: winning by n points
is valued n times as much as winning by a single point. The optimal policy shown in
Figure 5.13(a) reflects this desire to “run up the score”: as long as our team is tied or ahead,
the optimal play choice is A2 M1 D2, which maximizes the expected score difference. There
is never a case in which our team plays a more defensive play such as A1 M1 D3 or A0 M1 D4.

In contrast, the TPL-5 and TPL-10 policies put significantly more value on winning than on
the margin of victory. Therefore, if our team if winning by only a single point, the optimal
action is the more defensive A1 M1 D3 play, which aims to preserve the lead. However, our
team will switch back to A2 M1 D2 to run up the score if our team is winning by a margin
significant enough to nearly guarantee victory (such as being ahead by 2 points with less
than 400 time steps remaining). The general forms of these two policies are nearly identical,
but a close inspection shows that the TPL-10 policy is a bit more conservative, requiring a
larger score difference before trying to run up the score. For example, when there are 1000
time steps remaining, the TPL-5 policy will play A2 M1 D2 to run up the score if we are
ahead by 3 or more points, but the TPL-10 policy requires a score difference of 4 or more
points to play A2 M1 D2. This increased conservatism is exactly what we would expect, since
a higher value of k puts more weight on the value of winning and relatively less weight on
the margin of the victory.

The TPL-k policies sacrifice the probability of winning somewhat, in order to increase the
chances of winning by a large margin. This raises two obvious questions: (1) How much do
we lose, in terms of our chances of winning when we play a TPL-k policy? (2) How much
do we gain, in terms of the expected score difference for the games in which our team wins?

Table 5.8 answers question (1) by showing the theoretically-computed values of each policy

103

against each opponent, according to the zero-sum reward threshold function. Every entry in
the table is equal to P (winning)−P (losing) when the given policy is played against the given
opponent. The zero-sum reward threshold function maximizes P (winning) − P (losing), so
its value is greater than or equal to the value of every other policy. In contrast, the TPL-1
policy is very eager to drive up the score, which has the potential to cause a significant loss of
value compared to the optimal policy. For example, against A2 M1 D2, the optimal zero-sum
policy achieves a value of 0.1307, but the TPL-1 policy only achieves a value of 0.0219. In
fact, TPL-1 sacrifices significant value against all opponent plays except the extreme cases
of A0 M1 D4 and A5 M0 D0, in which the opponent is attacking with no players or with all
five players. In comparison, TPL-5 and TPL-10 do not sacrifice winning nearly as much; for
example, the value of TPL-10 is within 0.02 of optimal against every opponent play.

Opponent Play Zero-sum Value TPL-1 Value TPL-5 Value TPL-10 Value
A0 M1 D4 0.8179 0.8179 0.8179 0.8179
A1 M1 D3 0.0592 0.0331 0.0582 0.0591
A2 M1 D2 0.1307 0.0219 0.1306 0.1307
A3 M1 D1 0.5320 0.4784 0.5059 0.5152
A4 M1 D0 0.6286 0.5947 0.6119 0.6156
A5 M0 D0 0.9998 0.9998 0.9998 0.9998

Table 5.8: Shows the theoretically-computed values of each policy against each opponent,
according to the zero-sum reward threshold function. Every entry in the table is equal to
P (winning)− P (losing) when the given policy is played against the given opponent.

Opponent Play Zero-sum Score TPL-1 Score TPL-5 Score TPL-10 Score
A0 M1 D4 2.0095 2.2866 2.2866 2.2866
A1 M1 D3 1.0041 1.1660 1.0298 1.0108
A2 M1 D2 1.3435 1.7564 1.3477 1.3468
A3 M1 D1 1.8784 2.7153 2.5404 2.4288
A4 M1 D0 2.4208 3.2916 3.1692 3.1303
A5 M0 D0 14.0208 16.2945 16.2945 16.2945

Table 5.9: Shows the theoretically-computed score differences for each game which results
in a win for our team. Every entry in the table is equal to the mean score difference when
the given policy is played against the given opponent.

Table 5.9 answers question (2) by showing the theoretically-computed score differences for
each game which results in a win for our team. Every entry in the table is equal to the
mean score difference when the given policy is played against the given opponent, for games

104

in which our team wins (i.e., in which the final score difference is ≥ 1). As expected, we
see the opposite trend here: the TPL-1 policy scores the highest and the zero-sum policy
scores the lowest, with TPL-5 and TPL-10 striking a balance in between. TPL-1 indeed
scores significantly more goals per win than the zero-sum policy against every opponent
play, though at the cost of achieving fewer wins than the zero-sum policy. TPL-5 and TPL-
10 have a very interesting property: these approaches significantly increase the margin of
victory against opponents which are “easy” to beat (A0 M1 D4, A3 M1 D1, A4 M1 D0, and
A5 M0 D0), but perform very similarly to the zero-sum policy against opponents which are
difficult to beat (A1 M1 D3 and A2 M1 D2). TPL-5 and TPL-10 therefore provide a good
tradeoff, providing a near-optimal probability of winning against difficult opponents, while
successfully running up the score against relatively easy opponents. Ultimately, the designer
of the agent must decide whether the gain in score provided by a TPL-k policy is worth
the slightly decreased probability of winning. In the remainder of this thesis, we return to
the problem of maximizing the probability of winning (or achieving a given score threshold)
rather than also considering maximizing the margin of victory.

5.7 Summary

In this chapter, we have introduced thresholded-rewards semi-Markov decision processes
(TRSMDPs) to find optimal policies for the Capture the Flag and robot soccer domains. In
Section 5.2, we introduced an optimal solution algorithm for TRSMDPs.

Section 5.3.1 presented an analysis of the eleven Capture the Flag plays. After eliminating
each play which was strictly worse than some other play, six plays remained. Section 5.3.2
showed the time-to-score distributions for each team for all 36 possible joint play choices.
Section 5.3.3 tied all these results together to present the optimal TRSMDP policies for the
CTF domain. These policies were empirically tested in Section 5.3.4. Since there are many
plays and play combinations considered in this chapter, we have highlighted here only a
subset of the CTF results. Appendix B includes the full results of all our CTF experiments.

Section 5.4 presented an extensive empirical analysis of the performance of two different
plays, RoboCup and SuperDefense, in four hours of real robot soccer games. We showed
that our team’s play choice has a significant effect on the opposing team’s performance.
Namely, when we choose the SuperDefense play, the opponents score fewer goals per
game, and take longer on average to score each goal, than when we choose the RoboCup
play. Both these results are statistically significant. These results indicate that the optimal
play-selection strategy for our team—the policy that maximizes the probability of winning—
is to play the RoboCup play by default and to switch to the SuperDefense play when

105

our team is winning.

In Section 5.5, we used an MDP-based approach to find optimal policies for the CTF domain.
We found that the SMDP-based approach outperformed the MDP-based approach in an
empirical comparison.

Section 5.6 introduced the threshold-plus-linear-k objective function, which trades off be-
tween maximizing the probability of winning and maximizing the margin of victory. We
found that setting k to a high value, such as 10, provides a near-optimal probability of win-
ning against difficult opponents, while successfully running up the score against relatively
easy opponents.

Throughout this chapter, we have assumed that the opponent is playing a single play through-
out the entire game, and that we have perfect knowledge of which play the opponent is
playing. In the next chapter, we relax some of these assumptions.

106

Chapter 6

TRMDPs with Unknown Opponents

Chapter 5 introduces thresholded-rewards semi-Markov decision processes (TRSMDPs),
which model thresholded-rewards domains in which the time needed for a state transition
or reward assignment follows any arbitrary distribution. The TRSMDP solution algorithm
was tested in the robot soccer and CTF domains. However, we assumed that the opponent
plays a single play throughout the entire game, and that our team has perfect knowledge of
which play the opponent is playing. In this chapter, we relax these assumptions.

In Section 6.1, we introduce the problem of incidental behavior recognition. By “incidental,”
we mean that our team has some primary task beyond simply classifying the behavior of other
agents operating in the same environment. For example, in robot soccer, any observations of
the environment or opponent robots happen by “accident” as the team is primarily engaged
in playing soccer. We present experiments with our robot soccer team that demonstrate
that, with the right set of state features, our team can accurately classify the behavior of
the opponent team.

In Section 6.2, we direct our attention to the challenge of playing against an opponent whose
behavior is initially unknown. We consider a static opponent scenario in which the opponent
is playing a fixed, but initially unknown, play throughout the entire game and a dynamic
opponent scenario in which the opponent changes plays over the course of the game. We
utilize the concept of a default play as a safe response to an unknown opponent. We find
empirically that A2 M1 D2 is the best default play to use in the CTF domain. We also
empirically measure the effect of playing against opponents that change plays frequently or
infrequently.

107

6.1 Incidental Behavior Recognition in Robot Soccer

We introduce the problem of incidental behavior recognition—recognizing the behavior of the
opponent team from our own team’s observations. This is an interesting filtering problem
because our multi-robot team’s observations of the environment and of other robots are
incidental rather than purposeful. Many robotics researchers have used multi-robot teams to
address tasks such as providing surveillance of a given area, tracking multiple moving targets,
or recognizing the behavior of humans or robots. However, in these domains, the team’s
primary task is usually to monitor the environment or other agents (as in [20,43,60,64–66]);
in these approaches, the entire behavior of the team is driven toward successfully observing
the environment. In other approaches (such as [17, 73]), the team has a primary goal other
than activity recognition, but also possesses a global view of the environment, so the low-level
behaviors of the team do not significantly affect the quality of the observations.

In contrast, we define incidental behavior recognition as a problem in which the primary task
is not to observe the environment and classify the behavior of the other team; rather, the
primary task is to play soccer well, and any observations of the environment or opponent
robots happen by “accident” as the team plays soccer. Since the AIBO camera’s field of view
is very narrow—under 60 degrees—each robot has a very limited focus of attention, which is
usually focused on the ball since the ball is the most important object in the environment.
In particular, our RoboCup team does not explicitly track the movements of the opponent
robots nor attempt to maximize the portion of the field that is viewed.

6.1.1 Approach

We assume that the opponent’s play choice is unknown, but remains static throughout the
entire game. We desire an online classification algorithm: at each time step of execution, the
algorithm’s output is the most likely opponent play choice, given the history of observations
collected by our team members so far.

To achieve this goal, we utilize hidden Markov models (HMMs) to model the behavior of
the other team [51]. Our team collects training data by playing multiple games against each
opponent play and recording each team member’s observations of the environment. These
observation logs are used as labeled training data: given these logs, we use the Baum-Welch
algorithm to learn a model of the environment for each distinct opponent play. Our play-
recognition algorithm operates in an online fashion. At each time step, the play recognizer
uses the forward algorithm to compute the likelihood of the team’s entire joint observation
sequence given each of the learned models. The model which maximizes the likelihood of

108

the observation sequence is chosen as the best estimate of which play the opponent team is
running.

In order to achieve good classification performance, HMMs require that the observation
vectors used as input (both at training time and classification time) contain informative
features. We consider a limited set of feature-selection functions which map the raw joint
observations to (presumably) more informative feature vectors; the resulting feature vectors
are then used as the input during training and classification.

Due to the difficulty of collecting extensive training and test sets on the real robots, we utilize
leave-one-out cross-validation to evaluate the effectiveness of the play-recognition algorithm
and to determine which selections of features are most effective for the robot soccer domain.

6.1.2 Experimental Setup

In our incidental behavior recognition experiments, we utilize the RoboCup and SuperDe-
fense plays (introduced in Section 5.4.1). The RoboCup play is the default play we have
generally used in previous competitions; this play assigns an attacker robot, a defender robot,
and a supporter robot. The SuperDefense play is a defensive play that assigns all three
robots to defensive roles. In each experimental trial, our team plays the RoboCup play
against an unknown opponent playing either RoboCup or SuperDefense. The rules of
the game are the same as those presented in Section 5.4.1: the official RoboCup 2008 rules,
with minor modifications to enable a single human referee to successfully judge the game.

To enable distributed play recognition, each robot ri communicates the following data once
per second:

• The robot’s best estimate of its own position (pxi, pyi).

• The robot’s best estimate of the position of the ball (bxi, byi).

• The position of the last opponent robot seen (oxi, oyi).

All positions are communicated in global coordinates, so the team has a common frame of
reference. For each of these features, each robot also broadcasts a boolean feature indicating
whether the observation is considered “valid.” A robot’s estimate of its own position is valid
iff the robot’s estimate of localization error is relatively low, as determined by a threshold
on the robot’s localization confidence. The ball position estimate is considered valid iff the

109

robot’s own position estimate is valid and the ball has been seen recently with sufficiently
high confidence, as determined by our high-level vision and world modeling algorithms [75].
Similarly, the estimate of opponent robot position is considered valid iff the robot’s own
position estimate is valid and the opponent robot has been seen recently and with a high
vision confidence [13].

For the purposes of our experiments, the data broadcast by each robot is also sent to an
offboard computer for later processing, so that we can perform leave-one-out cross-validation
and further experiments in feature selection. In a real game situation, the robots would only
broadcast to each other, using the team’s joint observations to classify the opponent behavior
online.

Figures 6.1 and 6.2 show sample data logged by the robots from a typical RoboCup game
and a typical SuperDefense game (respectively). Lines indicate the positions of our team’s
robots, circles indicate observations of the ball, and squares indicate observations of opponent
robots. The figures only include valid observations; invalid observations are not shown. Our
team’s goal is located on the right side of each figure; the opponents’ goal is located on the
left side of each figure. In each figure, the column on the left shows the observations of the
robots in the first minute of the game. The column on the right shows the observations over
the course of the entire 10-minute game. Each row corresponds to the observations of one
of the three robots on our team. The combined observations of the three robots form the
team’s joint observation.

Even though the opposing SuperDefense team does not penetrate significantly into the
offensive half of the field, Figures 6.1 and 6.2 show that there is still a significant overlap
in observations between the RoboCup and SuperDefense games. These overlapping
observation histories show that correct classification of opponent plays is not a trivial task
in the robot soccer domain.

Formally, the observation of a single robot r at timestep t is:

or,t = 〈bxr,t, byr,t, bvr,t, pxr,t, pyr,t, pvr,t, oxr,t, oyr,t, ovr,t〉, (6.1)

where bxr,t and byr,t are the position of the ball in global coordinates as seen by robot r
at time t and bvr,t is a boolean flag saying whether robot r considers the ball observation
to be valid. Similarly, pxr,t, pyr,t, and pvr,t are the position and validity of robot r’s own
position and oxr,t, oyr,t, and ovr,t are the position and validity of the opponent most recently
observed by robot r. We then define the joint observation jt of the team at time t as the
combination of the individual robots’ observations at time t: jt = 〈o1,t, o2,t, o3,t〉. Over the
course of an entire game that is t timesteps long, the robots obtain a joint observation
sequence J = 〈j1, j2, . . . , jt〉.

110

Figure 6.1: Sample log data collected by our robots when the opponents play the RoboCup
play. Each image in the left column shows the observations of a single robot in the first minute
of the game. Each image in the right column shows the observations of a single robot over
the entire 10-minute game.

111

Figure 6.2: Sample log data collected by our robots when the opponents play the SuperDe-
fense play. Each image in the left column shows the observations of a single robot in the
first minute of the game. Each image in the right column shows the observations of a single
robot over the entire 10-minute game.

112

Algorithm 6.1 Play-Recognition algorithm.

1: Given: training sets RCtrain and SDtrain, observation sequence J of length t
2: λRC ← Baum-Welch(RCtrain)
3: λSD ← Baum-Welch(SDtrain)
4: for i = 1 to t do
5: Ji ← 〈j1, j2, . . . , ji〉
6: pRC ← P (Ji|λRC)
7: pSD ← P (Ji|λSD)
8: if pRC ≥ pSD then
9: C[i]← RoboCup

10: else
11: C[i]← SuperDefense
12: return C[i]

To collect training data, we ran twelve 10-minute games against an opponent team running
the RoboCup play and twelve 10-minute games against an opponent team running the Su-
perDefense play, for a total of four hours of game play time. In all trials, our own team
was running the RoboCup play. Let RC be the set consisting of the 12 joint observation
sequences gathered when playing against a RoboCup opponent; let SD be the set consist-
ing of the 12 joint observation sequences gathered when playing against a SuperDefense
opponent.

Algorithm 6.1 presents our play-recognition algorithm, which uses a fairly standard HMM-
based approach.1 The algorithm takes an input a labeled training set RCtrain consisting
of a set {J1, J2, . . . , Jn} of observation sequences gathered while the opponent was playing
the RoboCup play, and another training set SDtrain consisting of a set {J1, J2, . . . , Jn} of
observation sequences gathered while the opponent was playing the SuperDefense play.
On lines 2–3 of the play-recognition algorithm, the algorithm trains one HMM λRC by pro-
viding the training sequences RCtrain as input to the Baum-Welch algorithm; the algorithm
also trains another HMM λSD by providing the training sequences SDtrain as input to the
Baum-Welch algorithm. Lines 4–13 provide online classification at each timestep i. Ji is
the vector of all joint observations 〈j1, j2, . . . , jt〉 seen by the team in the first i timesteps.
On lines 6–7, the algorithm computes the likelihood of Ji according to the two models λRC
and λSD. These likelihoods are computed using the forward algorithm. The model λ which

1We could consider using any arbitrary behavior-recognition algorithm, rather than the relatively straight-
forward HMM-based approach presented here; however, our goal here is simply to show that behavior recog-
nition is feasible in the setting in which our team receives only incidental observations of the environment.
We do not claim that the approach presented here necessarily achieves the best possible recognition accuracy
in this domain.

113

Algorithm 6.2 Cross-validation procedure.

1: Given: sets of observation sequences RC and SD, each of size k
2: correct ← 0; incorrect ← 0
3: for i = 1 to k do
4: rc← RCi
5: sd← SDi

6: Crc ← Play-Recognition(RC − {rc}, SD − {sd}, rc)
7: Csd ← Play-Recognition(RC − {rc}, SD − {sd}, sd)
8: correct ← correct + number of elements e in Crc s.t. e = RoboCup
9: incorrect ← incorrect + number of elements e in Crc s.t. e 6= RoboCup

10: correct ← correct + number of elements e in Csd s.t. e = SuperDefense
11: incorrect ← incorrect + number of elements e in Csd s.t. e 6= SuperDefense
12: return correct / (correct + incorrect)

maximizes the likelihood of the observation sequence is chosen as the best estimate of which
play the opponent team is running. The classification output is stored in the array C.

We perform leave-one-out cross-validation to evaluate the effectiveness of our approach. Al-
gorithm 6.2 presents the cross-validation procedure. Since we have 12 observation sequences
for each case, the main loop (lines 3–12) runs 12 times. In each iteration, one element sd is
held out of SD and one element rc is held out of RC. The remaining observation sequences
are used to classify sd and rc, and the number of successful and unsuccessful classifications is
recorded. The procedure returns the fraction of timesteps which were successfully classified.

Good classification performance requires a good domain representation, namely an informa-
tive set of features from the raw joint observations. In principle, we can apply any arbitrary
function f(j) to map a single joint observation to a vector of features. Here, we only consider
feature-selection functions of a limited form. Namely, f(j) can only perform two operations:

1. Filtering out some features, removing them from the joint observation entirely. Some
of the fields communicated by the robots may not be useful for play recognition, in
which case the models may overfit if these fields are present. Filtering allows useless
features to be ignored.

2. Re-ordering features in the joint observation. By default, the joint observation is formed
by simply concatenating the observation vectors of each individual robot. However, we
consider re-ordering features in the joint observation so that specific positions in the
joint observation vector have a semantic meaning. For example, the center of the field is
(0, 0) in our coordinate system and positive x points towards our own goal. Sorting our

114

robots’ positions by x in ascending order therefore orders the positions from “nearest
the opponent goal” to “furthest from the opponent goal.” After this reordering, a
specific index k in the transformed feature vector semantically corresponds to the x-
position of our robot closest to the opponent goal, which may a more informative
feature for activity recognition than “the x-position of robot i.” Feature re-ordering
allows such semantics to be an explicit part of the model.

To help understand which features are most important for successful play recognition in robot
soccer, we tried a variety of feature-selection functions and computed the overall classification
accuracy of each. These results are presented in the next section.

6.1.3 Experimental Results

By itself, ball position is the most informative feature. If the observation vectors include only
the ball’s x- and y-coordinates plus the “ball valid” flag, and the ball observations are sorted
by their x-coordinates, the activity recognition algorithm achieves an overall classification
accuracy of 86.98%.

Using only the reported x-positions of our own robots (sorted by x) achieves an accuracy
of 82.34%. It is interesting to note that adding our team’s own y-positions actually lowers
our classification accuracy to 76.65%, due to overfitting. Adding the “own position valid”
flag also hurts classification accuracy; we believe that this is because the robots’ position
confidence estimates were tuned for single-robot behavior, such as deciding when the robot
needs to look at localization landmarks, rather than being tuned for team behavior or op-
ponent recognition. By itself, using the x-positions of opponent robots (sorted, plus the
“opponent valid” flag) performs quite poorly, achieving an accuracy of only 69.54%. Adding
the y-positions of opponents also decreases classification accuracy, to 63.74%, which we also
attribute to overfitting.

If the feature vector incorporates the ball position plus our team’s positions, overall accuracy
increases to 87.44%. Including the opponent positions as well results in the best accuracy:
88.63%. We conclude that the position of the ball is by far the most important feature;
however, including additional information can help somewhat in classification performance.
The importance of the ball is unsurprising given the incidental nature of our classification
task—since most of the robots on our team spend most of their time focusing their attention
on the ball, the ball is the object that is seen most and has the lowest observation error.
The accuracy levels achieved with different sets of features are summarized in Figure 6.3.

115

Features used Classification accuracy
〈 ball x, ball y, ball valid 〉 86.98%

〈 own x 〉 82.34%
〈 opp. x, opp. valid 〉 69.54%

〈 ball x, ball y, ball valid, own x 〉 87.44%
〈 ball x, ball y, ball valid, own x, opp. x, opp. valid 〉 88.63%

Figure 6.3: Summary of classification accuracy when using different sets of features as input
to the HMM.

Through the selection of the proper set of features, the HMM play recognizer achieves classi-
fication accuracy of 88.63%. One question remains: in which circumstances does the classifier
still make errors? Figure 6.4 shows the classification accuracy at each time step of a typical
RoboCup game and a typical SuperDefense game. This figure shows that all of the
classification errors occur early in the game, before the algorithm has collected many obser-
vations. After about 100 seconds have elapsed, the classification accuracy for both games
is 100%. In fact, this is the typical pattern seen in almost all the games: the classification
accuracy is rather poor at the beginning, but improves significantly after 100–200 seconds
have elapsed. We therefore claim that in a real robot soccer scenario, we would not want
to change the behavior of our own team to adjust to the opponents until either a certain
amount of time has elapsed and/or until the likelihoods of the observation sequence given
each of the models have diverged significantly.

6.1.4 Summary

In this section, we discussed the problem of incidental play recognition, in which a team of
agents or robots attempts to recognize the behavior of an opponent team while engaged in a
primary task (such as robot soccer) that is not optimized for behavior recognition. Our team
members periodically communicate their observations of their own position, the position of
the ball, and the position of opponent robots. Using an approach based on hidden Markov
models, our team can accurately classify the behavior of the opponent team 88.63% of the
time. Many of the classification errors are made at the very beginning of each game, when
there is less data available to the classifier.

116

Figure 6.4: Classification accuracy at each timestep for a typical RoboCup game and a
typical SuperDefense game.

6.2 Acting in Response to an Unknown Opponent

In this section, we direct our attention to the problem of playing against an opponent whose
behavior is initially unknown. We consider two scenarios:

• Static opponent play. This scenario is equivalent to the robot soccer results pre-
sented in the previous section: the opponent is playing a fixed, but unknown, play
throughout the entire game. Our team needs to recognize the play chosen by the
opponents such that it can play the optimal TRSMDP policy in response.

• Dynamic opponent play. In this scenario, the opponent is dynamic—changing
play selection over the course of the game. As in the static-opponent scenario, the
opponent’s play selection is initially unknown to our team. In addition, the opponent
changes plays at c random times during the game. By varying c, we measure the effect
of playing against opponents that change plays frequently or infrequently.

117

We assume the existence of an activity recognizer that has properties similar to the HMM
activity recognition algorithm presented in the previous section. Namely, we assume that
the activity recognizer has some recognition delay: an amount of time needed in order to
successfully recognize the behavior of the opponent. At the beginning of the game, or
whenever the opponent’s play switches, the activity recognizer provides no useful data until
the recognition delay has elapsed.2 After the recognition delay has elapsed, we assume that
the activity recognizer produces perfect recognition results, identifying the opponent play
correctly 100% of the time. We use this idealized activity recognizer so that we can directly
measure the effect of varying the recognition delay.

6.2.1 Static Opponent

We first consider the static-opponent scenario. In this scenario, the opponent is playing a
single play throughout the entire game, but our team does not know which play the opponent
is playing until the recognition delay d elapses. During this initial period of uncertainty, our
team plays a default play which is intended to be effective against all possible opponents.
After d time steps have elapsed, our team switches to the optimal policy against the (now
known) opponent, as presented in Section 5.3.3.

We first introduced the concept of a default play in the context of robot soccer, as a failsafe
coordination plan in the event of networking failures in a robot team (see Appendix A
and [38,39]). Here, we extend the concept of the default play, utilizing the default play as a
safe response to an unknown opponent.

Default Play Selection

The first question we answer is: which play should our team use as the default play?3 We
find the best default play empirically, playing 3000 full games with every possible choice
of our default play px, the opponent’s static play py, and with the recognition delay d
ranging from 200 to 1800, in increments of 200. We empirically measure the value Vpx,py =
P (winning) − P (losing) for each case. We apply a standard minimax reasoning procedure:
we pessimistically assume that the opponent’s play will be the one that minimizes V given

2By “provides no useful data,” we mean that the activity recognizer considers all possible opponent plays
to be equally probable.

3In general, our team might consider choosing a stochastic default play; however, we assume here that
the opponent is not attempting to change plays in response to our team’s play choice, so a fixed default play
should be sufficient.

118

our choice px; given this, we desire to maximize V . Formally, we wish to find:

argmax
px

(
min
py

Vpx,py

)
(6.2)

Table 6.1 shows the best default play to choose in response to each opponent play in CTF, for
d = 1000. Each row of the table shows one opponent play, the default play which performs
best against that opponent play, and the expected value our team would achieve, as measured
by our experiments. For d = 1000, the opponent play which minimizes our expected value is
A1 M1 D3. Given the opponent’s choice of A1 M1 D3, our team’s expected value is maximized
if we use A2 M1 D2 as the default play against A1 M1 D3. Therefore, when d = 1000, the best
default play is A2 M1 D2. In fact, it turns out that the best default play is A2 M1 D2 for every
choice of the recognition delay d.

Opponent play Best default play Value
A0 M1 D4 A5 M0 D0 0.8237
A1 M1 D3 A2 M1 D2 0.0257
A2 M1 D2 A2 M1 D2 0.0440
A3 M1 D1 A2 M1 D2 0.4270
A4 M1 D0 A2 M1 D2 0.5170
A5 M0 D0 A4 M1 D0 1.0000

Table 6.1: The best default play to choose in response to each opponent play for d = 1000,
and the expected value our team would achieve as measured by our experiments.

Effect of Recognition Delay

The next question we answer is: how does the expected value change as the recognition delay
d increases? We expect that the value goes down as d increases, because our team remains
unaware of the opponent’s play longer and is unable to exploit the optimal policy against the
specific opponent until later in the game. Table 6.2 shows the empirically measured value
of using A2 M1 D2 as the default play against each of the six opponents and with d ranging
from 0–1800 in increments of 200. Note that d = 0 corresponds to knowing the opponent’s
play choice immediately at the beginning of the game; the values for the d = 0 column are
taken from Table 5.4 in Section 5.3.4.

The general trend is as expected: as d increases, the value against each play generally
decreases. However, random chance in experimental results makes it hard to notice the

119

general trend directly from the data in Table 6.2. Table 6.3 shows the same data in a different
fashion: as differences in value between the known-opponent case and the unknown-opponent
case. Positive entries in the table indicate values that are greater than the known-opponent
case; negative entries in the table indicate values that are less than the known-opponent
case. As expected, most of the entries in the table are negative (or very slightly positive,
due to random chance). The bottom row of the table shows the mean value lost over all
six opponent plays, for each setting of d. When d ranges from 200–600, we see that the
mean value lost is very small; less than 0.01 in each case. For d from 800–1200, the mean
value lost is between 0.01 and 0.02. For d of 1400 and higher, the mean value lost rises
significantly: from 0.0357 to 0.0587. The fact that the loss increases rapidly as d approaches
the length of the entire game reinforces our results (from Figure 4.5 in Section 4.4) that
acting suboptimally near the end of the time horizon causes a much greater loss than acting
suboptimally near the beginning of the time horizon.

Opp. play d = 0 d = 200 d = 400 d = 600 d = 800 d = 1000 d = 1200 d = 1400 d = 1600 d = 1800
A0 M1 D4 0.8217 0.8113 0.8153 0.8167 0.8057 0.7880 0.7660 0.7523 0.7173 0.6083
A1 M1 D3 0.0533 0.0343 0.0440 0.0593 -0.0017 0.0257 0.0120 0.0113 0.0050 -0.0073
A2 M1 D2 0.0797 0.0813 0.0670 0.0640 0.0390 0.0440 0.0667 0.0127 0.0193 -0.0167
A3 M1 D1 0.4347 0.4360 0.4147 0.4240 0.4427 0.4270 0.4400 0.4023 0.4093 0.4227
A4 M1 D0 0.5227 0.5417 0.5213 0.5227 0.5197 0.5170 0.5403 0.5193 0.5287 0.5527
A5 M0 D0 0.9993 0.9997 1.0000 1.0000 0.9997 0.9997 1.0000 0.9993 0.9993 0.9993

Table 6.2: The empirically measured value of using A2 M1 D2 as the default play against
each of the six opponents, for each value of the recognition delay d.

Opp. play d = 200 d = 400 d = 600 d = 800 d = 1000 d = 1200 d = 1400 d = 1600 d = 1800
A0 M1 D4 -0.0104 -0.0064 -0.0050 -0.0160 -0.0337 -0.0557 -0.0694 -0.1044 -0.2134
A1 M1 D3 -0.0190 -0.0093 0.0060 -0.0550 -0.0276 -0.0413 -0.0420 -0.0483 -0.0606
A2 M1 D2 0.0016 -0.0127 -0.0157 -0.0407 -0.0357 -0.0130 -0.0670 -0.0604 -0.0964
A3 M1 D1 0.0013 -0.0200 -0.0107 0.0080 -0.0077 0.0053 -0.0324 -0.0254 -0.0190
A4 M1 D0 0.0190 -0.0014 -0.0000 -0.0030 -0.0057 0.0176 -0.0034 0.0060 0.0300
A5 M0 D0 0.0004 0.0007 0.0007 0.0004 0.0004 0.0007 0.0000 0.0000 -0.0000
Mean Loss -0.0012 -0.0082 -0.0041 -0.0177 -0.0183 -0.0144 -0.0357 -0.0387 -0.0587

Table 6.3: Difference between the empirically measured values of the known-opponent case
and using A2 M1 D2 as the default play against each of the six opponents, for each value of
the recognition delay d.

120

6.2.2 Dynamic Opponent

We consider the dynamic-opponent scenario, in which the opponent changes plays over the
course of the game. As in the static-opponent scenario, the opponent’s play selection is
initially unknown to our team. In addition, the opponent changes plays at c random times
during the game. By varying c, we measure the effect of playing against opponents that
change plays frequently or infrequently.

We restrict the opponent’s play choice here to the two plays that perform best against the
thresholded-rewards CTF policies: A1 M1 D3 and A2 M1 D2. In Section 5.3.4, we present
results showing that the empirically-measured values of the optimal policies against these
two opponent plays are 0.0533 and 0.0797, respectively. The opponent’s initial play choice
is chosen at random between A1 M1 D3 and A2 M1 D2. Before the game begins, c times are
chosen uniformly at random between 0 and 2000; at these times, the opponent team will
switch plays. By varying c, we measure the effect of playing against opponents that switch
plays frequently or infrequently.

We set the recognition delay d to 200 for all the experiments performed in this section.4 The
opponent’s initial play choice is unknown to our team for the first 200 time steps; furthermore,
the opponent’s play choice becomes unknown for the next 200 time steps whenever the
opponent switches plays. As in the previous section, our team’s policy is to choose A2 M1 D2

as the default play when the opponent’s play is unknown; when the opponent’s play is known,
our team plays the optimal policy in response, as presented in Section 5.3.3.

We performed a set of experiments, varying the number of times the opponents change their
play, c, from 1 to 10. For each condition, 3000 CTF games were played. Table 6.4 presents
our results. Each row of the table shows the number of wins, losses, and ties achieved
by our team for each value of c, and the empirically measured value of each condition:
(# wins − # losses) / 3000. We were initially surprised to see that our team’s expected
value actually increases as c increases: from 0.0480 at c = 1 to 0.1007 at c = 10. As in
Section 5.3.4, we attribute this to the cost of switching plays: every time the opponent team
changes plays, it takes some time for the team members to reconfigure themselves into their
new roles, and during this transition time the opponents are vulnerable to having the flag
taken. It turns out that the opponent team’s cost of switching plays is greater than our
loss due to not playing the optimal strategy against the opponent, so our expected value
increases as the opponent switches plays more frequently.

To get a better idea of how much value our team does lose due to the effect of not knowing

4In the CTF domain, 200 time steps is 10% of the total game length; this is roughly the same proportion
of the game as the recognition delay experienced by our real robot soccer team.

121

c Wins Losses Ties Value
1 1057 913 1030 0.0480
2 1089 969 942 0.0400
3 1096 922 982 0.0580
4 1109 905 986 0.0680
5 1129 916 955 0.0710
6 1137 904 959 0.0777
7 1149 910 941 0.0797
8 1161 905 934 0.0853
9 1185 918 897 0.0890
10 1198 896 906 0.1007

Table 6.4: Results of playing against a dynamic opponent that switches between A1 M1 D3

and A2 M1 D2 at c random times throughout the game. Each row of the table shows the
number of wins, losses, and ties achieved by our team for each value of c, and the empirically
measured value of each condition.

the opponent’s play choice, we performed an additional experiment in which the opponent’s
cost of switching plays is reduced significantly. This experiment was identical to the pre-
vious experiment, but whenever the opponents switched plays, any opposing players in the
Defender role were immediately teleported to their desired positions near the flag, signifi-
cantly reducing the cost of switching plays for the opponent. However, this teleportation
effect was only applied to the opposing team; our team still experienced the normal cost of
switching plays. The opponents’ ability to teleport thus presents the worst-case scenario for
our team, as we cannot take advantage of the opponent team when they switch plays, but
the opponents can take advantage of our team when we switch plays. However, since our
team’s abilities remain unchanged, the results of this experiment are directly comparable to
the results presented earlier in this chapter and in Chapter 5.

We performed another set of experiments, varying c from 1 to 10. For each condition, 6000
CTF games are played. Table 6.5 and Figure 6.5 present our results. Each row of Table 6.5
shows the number of wins, losses, and ties achieved by our team for each value of c, and
the empirically measured value of each condition: (# wins − # losses) / 6000. Figure 6.5
shows the same data, plotted with the number of opponent play switches per game on the
x-axis and the empirically measured value on the y-axis. As c increases from c = 1 to
c = 4, we observe that the empirical value falls from 0.0443 to near zero. As c increases, the
opponent switches plays more frequently, and so our team is unaware of the opponent’s play
for larger proportions of the game. Our team is therefore forced to play suboptimally more
often, choosing the default play instead of the optimal thresholded-rewards policy. However,

122

c Wins Losses Ties Value
1 2067 1801 2132 0.0443
2 2059 1850 2091 0.0348
3 2050 1960 1990 0.0150
4 1999 2004 1997 -0.0008
5 2048 2007 1945 0.0068
6 2022 2015 1963 0.0012
7 2050 2004 1946 0.0077
8 2051 2012 1937 0.0065
9 2049 2082 1869 -0.0055
10 2078 2121 1801 -0.0072

Table 6.5: Results of playing against a dynamic opponent that switches between A1 M1 D3

and A2 M1 D2 at c random times throughout the game. Each row of the table shows the
number of wins, losses, and ties achieved by our team for each value of c, and the empirically
measured value of each condition.

from c = 4 to c = 10, the value remains essentially unchanged, falling within [−0.01, 0.01]
in all cases. For c ≥ 4, our team no longer knows the opposing team’s play often enough
to effectively play the optimal thresholded-rewards strategy in response. However, it is
reassuring to note that our performance does not fall significantly below 0. This indicates
that, even in the worst case, our choice of a safe default play ensures that our team has the
same probability of winning as the opponent.

6.3 Summary

In this chapter, we relaxed the assumption that the play choice of the opponent is static and
known to our team a priori. We introduced the problem of incidental behavior recognition, in
which our team has some primary task beyond simply classifying the behavior of other agents
operating in the same environment. Experiments with our robot soccer team demonstrate
that, with the right set of state features, our team can accurately classify the behavior of
the opponent team 88.63% of the time. Many of the classification errors are made at the
very beginning of each game, when there is less data available to the classifier.

In the CTF domain, we considered a static opponent scenario in which the opponent is
playing a fixed, but initially unknown, play throughout the entire game and a dynamic
opponent scenario in which the opponent changes plays over the course of the game. We

123

Figure 6.5: Results of playing against a dynamic opponent that switches between A1 M1 D3

and A2 M1 D2 at c random times throughout the game. The x-axis shows the number of
opponent play switches per game; the y-axis shows the empirically measured value.

extended the concept of a default play, originally introduced as a failsafe coordination plan
in the event of network failures in a robot team, as a safe response to an unknown opponent.

Our experiments in the static-opponent case show that A2 M1 D2 is the best default play to
use in the CTF domain. We also performed experiments that show how our expected value
is dependent on the recognition delay: the amount of time it takes our team to successfully
recognize the behavior of the opponent team. As the recognition delay increases, our expected
value decreases.

In the dynamic-opponent case, we found that the opponent’s cost of play switching is greater
than our team’s cost of not knowing which play the opponent is playing; therefore our team
performs better against an opponent which switches plays more frequently. We performed a
further experiment in which the opponent’s cost of switching plays was artificially reduced, by
teleporting the opponent’s defenders into their desired positions immediately upon initation
of the new play. In this scenario, our team performs worse when the opponent switches
plays more frequently; however, our value never falls significantly below 0, indicating that

124

our choice of a safe default play ensures that our team has the same probability of winning
as the opponent.

The results presented in this chapter show that it is possible for our real robot soccer team
to effectively recognize the behavior of the opponent team, even though our observations
of the environment are incidental. Furthermore, we have showed that the combination of a
default play with the optimal thresholded-rewards policy can lead to effective performance
in situations in which the behavior of the opponent team is initially unknown, and in which
the opponent switches plays during execution.

125

126

Chapter 7

TRMDPs with Unknown Rewards

In this chapter, we focus on a control problem inspired by reCAPTCHA: given a document
containing w unknown words and a hard time deadline h, how can the challenge generator
choose challenges in order to maximize the probability of successfully transcribing the entire
document on time? (Section 2.3 presents a full description of the reCAPTCHA domain.)
This control problem is challenging because the reCAPTCHA system does not know whether
an answer to an unknown word is correct. We are therefore posed with the difficult problem
of trying to obtain some given amount of reward (number of words digitized) without actually
knowing the amount of reward achieved during execution.

In the following section, we present a detailed model of the reCAPTCHA domain that is
derived from over 29 million answers gathered by the real reCAPTCHA system over a six-
month period. In Section 7.2, we briefly present a summary of the algorithms from previous
chapters that we use to tackle the challenge of unknown rewards. In Section 7.3, we present
an algorithm that aims to address the problem of unknown rewards by taking periodic
samples of reward values. In Section 7.4, we experimentally evaluate the performance of
this algorithm against the optimal thresholded-rewards policy, the policies generated by the
uniform-k heuristic, and the policy that maximizes expected rewards (without considering
time or cumulative reward). We also compare the effects of two different reward estimation
functions.

127

7.1 reCAPTCHA Domain Model

We model the reCAPTCHA domain as an MDP (S,A, T,R). Each step in the MDP corre-
sponds to a single user requesting a CAPTCHA challenge. The state of the system represents
whether the reCAPTCHA system is currently “under attack” by a large number of malicious
users. Given the state, the challenge generator then needs to choose an action—which type
of CAPTCHA challenge to send to the user. We consider three types of challenges: standard,
in which the user is shown one known word and one unknown word; two-known, in which the
user is shown two known words; and two-unknown, in which the user is shown two unknown
words. Reward is gained when a user provides a correct solution to an unknown word and
lost when a user provides an incorrect solution to an unknown word.

The reward distribution for the reCAPTCHA domain is derived by analyzing the answers
provided by 31,163 of the most active reCAPTCHA users.1 Over a six-month period, these
users submitted over 29 million answers to reCAPTCHA. We measured each user’s solu-
tion accuracy; Figure 7.1 shows a histogram of per-user solution accuracies. Based on this
histogram, we have partitioned the users into three classes:

1. Accurate users. This group consists of the 27,286 users that attain a solution accuracy
of 85% or higher. These users submitted a total of 28,921,000 answers; 95.22% of these
answers were correct. Accurate users constitute the majority of reCAPTCHA users.

2. Inaccurate users. This group consists of the 3,807 users with solution accuracies in the
range [10%-85%). These users submitted a total of 873,000 answers; 66.88% of these
answers were correct. Inaccurate users are not necessarily trying to seed incorrect
answers into the system; many of them are from countries where English is not a
commonly-spoken language. This makes it more difficult to pass the reCAPTCHA
challenge, since most of the reCAPTCHA challenges consist of English words.

3. Malicious users. This group consists of 70 users with solution accuracies lower than
10%. These users submitted a total of 108,000 answers; 0.44% of these answers were
correct. Though these users provide a small proportion of total answers, it is important
to consider them in our analysis because their traffic can be “bursty”; i.e. multiple
malicious users may simultaneously submit many bad answers to reCAPTCHA as part
of an organized attack. After time passes, the malicious users generally disappear.

1In this analysis, we assume that each unique Internet Protocol (IP) address corresponds to a single
user. In reality, due to network address translation (NAT) and proxies, one IP address may be shared by
multiple humans. Conversely, a single attacker may use a network of multiple machines (a “botnet”) to
submit answers from a large number of IP addresses. However, these distinctions are mostly irrelevant for
the analysis presented here.

128

Figure 7.1: Histogram of per-user solution accuracy for 31,163 of the most active re-
CAPTCHA users.

Figure 7.2 shows the three states of our MDP model: accurate, mixed, and attack. The ac-
curate state corresponds to the most common case, when nearly all the users are “accurate”:
answering reCAPTCHA challenges with high accuracy. In the mixed state, we assume that
half the users are “accurate” and half the users are “inaccurate.” We therefore expect that a
standard reCAPTCHA challenge will get answered correctly approximately 81% of the time.
In the attack state, we similarly assume that half the users are “accurate” and half the users
are “malicious,” leading to an overall accuracy rate of approximately 48%.

Figure 7.3 shows the reward distribution for our model, which is derived from actual re-
CAPTCHA answer data. We assume that we get 1 point of reward for every unknown word
answered correctly by a user, and −2 points of reward for every word answered incorrectly,
as it generally takes two correct answers to override each incorrect answer when it comes
time to produce the final output. For a standard CAPTCHA challenge, the agent receives
reward of either 1 or −2. For a two-unknown challenge, the agent receives reward of 2 (if
both words are answered correctly), −1 (if one word is answered correctly and one word
is answered incorrectly), or −4 (if both words are answered incorrectly). For a two-known
challenge, no rewards are obtained because no unknown words are presented to the user.

129

Figure 7.2: MDP model of the reCAPTCHA domain.

R(s, a) a = standard a = two-unknown a = two-known

s = accurate
1 (p=0.9522)
-2 (p=0.0478)

2 (p=0.7067)
-1 (p=0.1910)
-4 (p=0.1023)

0 (p=1.0)

s = mixed
1 (p=0.8105)
-2 (p=0.1895)

2 (p=0.5569)
-1 (p=0.3572)
-4 (p=0.0859)

0 (p=1.0)

s = attack
1 (p=0.4783)
-2 (p=0.5217)

2 (p=0.1288)
-1 (p=0.5490)
-4 (p=0.3222)

0 (p=1.0)

Figure 7.3: Reward distribution for the reCAPTCHA domain.

Figure 7.4 shows the transition probabilities for our domain, which model the fact that
the most common state is accurate, followed by mixed, with attack occurring only a small
proportion of the time. We assume that our choice of action does not affect the transition
probabilities; therefore the transition probabilities only depend on the current state.

In summary, our model of the reCAPTCHA domain is an MDP M = (S,A, T,R), where
S = { accurate, mixed, attack }, A = { standard, two-unknown, two-known }, T is given by
Figure 7.4, and R is 1 for every unknown word answered correctly and −2 for every unknown
word answered incorrectly (given by Figure 7.3).

T (s, ∗, s′) s′ =accurate s′ =mixed s′ =attack
s =accurate 0.9 0.09 0.01
s =mixed 0.09 0.9 0.01
s =attack 0.09 0.01 0.9

Figure 7.4: Transition probabilities for the reCAPTCHA domain.

130

7.2 Background

In previous chapters, we have focused on the problem of timed, zero-sum games such as
robot soccer and Capture the Flag, in which the goal is to be ahead at the end of the time
horizon. In this chapter, we address a domain that also has a hard time deadline, but is
not zero-sum. Instead, our “score” is the number of words successfully digitized so far. We
model the reCAPTCHA domain as an MDP, as described above; the threshold function f is
the zero-one reward threshold function introduced in Section 3.1:

rtrue =

{
1 if rintermediate ≥ w

0 otherwise.
(7.1)

Recall from Chapter 3 that the optimal policy for a TRMDP depends on the state, the time
remaining, and the cumulative reward actually obtained during execution time. However, in
the reCAPTCHA domain, we do not know the cumulative reward—since reCAPTCHA does
not know the correct spelling of each word, the system does not know how much cumulative
reward has been obtained during execution time. In this chapter, we extend the TRMDP
approach to domains with unknown rewards by presenting a sampling-based algorithm that
chooses actions based on an estimate of the cumulative reward achieved so far.

In Chapter 4, we presented heuristic solution methods for TRMDPs. One of these heuristic
approaches is uniform-k (Section 4.1), in which the policy only considers changing actions
every k steps, in order to save computation time. In this chapter, we find that the uniform-k
heuristic is also useful for the development of our sampling-based approach.

It is important to note that the problem of unknown rewards in a thresholded-rewards domain
is distinct from the problem of an unknown or unmodeled domain, such as is addressed by
reinforcement learning [22]. In reinforcement learning, the agent does not know the transition
or reward functions a priori, but must learn about the domain using the transitions and
rewards experienced during execution. Rather, we assume that the transition and reward
functions are known, but the actual reward values received during execution are unknown.

7.3 Sampling-Based Control Policy

The optimal policy in a thresholded-rewards domain depends on the time remaining and the
cumulative reward obtained by the agent. In this section, we present our sampling-based
control policy which aims to address the challenge of having unknown rewards at execution

131

Algorithm 7.1 Sampling-based control policy.

1: Given: MDP M , threshold function f , time horizon h, sampling interval k, reward
estimation function E

2: π ← Uniform(M, f, h, k)
3: S ← {} // set of reward samples
4: s← s0 // current state
5: for t← h to 1 do
6: if |S| = 0 then
7: r̂ ← 0
8: else
9: r̂ ← nearest integer(E(S))

10: a← π(s, t, r̂)
11: (s, r)← Act(M,a)
12: when r then // get reward sample (every k steps)
13: |S| ← |S| ∪ {r}

time. We assume that our agent occasionally observes the reward received when taking an
action; for the reCAPTCHA domain, we assume we have access to an oracle: a trusted
human who checks the results of every kth CAPTCHA response and verifies whether the
solutions to the unknown words (if any) were correct.2 The agent will only consider changing
its policy when it receives a reward sample, which means that the agent’s policy is equivalent
to the uniform-k policy except that we use an estimate of the cumulative reward rather than
the true cumulative reward.

Algorithm 7.1 shows our sampling-based control policy for thresholded-rewards domains
with unknown rewards. This algorithm takes the same inputs as the TRMDP solution
algorithm (Algorithm 3.2): an MDP M , threshold function f , and time horizon h. For the
reCAPTCHA domain, f is the zero-one threshold function shown in Equation 7.1: we receive
reward 1 if the cumulative reward is greater than or equal to the number of unknown words
w in the document; 0 otherwise. Algorithm 7.1 also takes as input an integer k, the number

2Instead of having a trusted human who checks every kth answer, in the reCAPTCHA domain we could
instead verify every kth CAPTCHA response by asking n additional users to transcribe the same word. The
initial response is judged to be correct iff if a majority of the other users agree with the initial response. The
risk of doing this is that we could get “tricked” if many of the users are providing malicious answers. As long
as there are at least some honest users in the system, we can set n high enough that getting tricked is an
event that happens with arbitrarily low probability. However, the downside to this approach is that setting
a high n means that there are fewer “useful” human answers available. In this chapter, we don’t consider
how this oracle might be implemented; we just assume that some oracle exists, and that querying the oracle
has some non-trivial cost—otherwise we would just query the oracle at every single timestep.

132

of time steps elapsed between each reward sample; and a reward estimation function E,
which takes in a set of reward samples S and outputs an estimate of how much cumulative
reward the agent has received so far. In this chapter, we consider two reward estimation
functions. The first, Mean, computes the mean of the samples, then multiplies this value
by the total number of steps taken so far:

Mean(S) =

∑
r∈S r

|S|
× (h− t) (7.2)

The other reward estimation function we consider is Low, which estimates the per-step
reward as the lower bound of the 95% confidence interval of the samples seen so far:

Low(S) = CI-Lower-Bound(S)× (h− t) (7.3)

Line 2 of Algorithm 7.1 first calls the uniform-k TRMDP solution heuristic. This returns
the best policy π that only considers changing strategies every k time steps. On lines 3–4,
we initialize the set of reward samples to the empty set and the current state of the system
to be the initial state of MDP M . Line 5 begins the main control loop of the agent: in
each iteration through this loop, the agent executes a single action. Lines 6–9 determine
the reward estimate r̂ that will be used to determine the action. If the agent has not yet
received any reward samples, it assumes that the cumulative reward is 0. If the agent does
have samples, it calls the reward estimation function to estimate the cumulative reward.
The result of the reward estimation function is rounded to the nearest integer, because the
policy π returned by the uniform-k solution algorithm requires integer reward values. Line
10 determines the optimal action to take given the current state, the time remaining, and
our estimate of the cumulative reward. On line 11, the agent acts in the world. As a result of
this action, the agent receives the new state of the system s, and may also receive knowledge
of the reward r it received for taking that action. If a reward sample is received, the agent
adds it to the set of reward samples seen. Regardless, the loop then continues at line 5, until
h time steps have elapsed and the process completes.

7.4 Results

In this section, we present results showing the effectiveness of our algorithm in the re-
CAPTCHA domain. First, we consider the question: how effective would an agent be if
the agent actually knew the reward it received at execution time? By running the optimal
TRMDP solution algorithm on this domain, we can find the value of the optimal policy,
which serves as an upper bound on the value of any solution algorithm for this domain.

133

Figure 7.5: Value of the optimal policy and uniform-k for the reCAPTCHA domain, with
the time horizon h = 1000, values of k in {10, 20, 50, 100}, and thresholds ranging from
500–1500.

Further, the uniform-k algorithm provides the optimal policy that only considers changing
policy every k steps. This gives an upper bound on value of any policy that samples every k
steps: if the reward estimation function E always returns the actual cumulative reward, the
sampling policy will always choose the optimal uniform-k action; however, if E estimates
incorrectly, the sampling policy might choose a suboptimal action.

Figure 7.5 shows the results of running the optimal solution algorithm and uniform-k heuris-
tic on the reCAPTCHA domain, with the time horizon set to h = 1000 steps, threshold values
ranging from 500 to 1500, and k set to 10, 20, 50, and 100. The value of each policy is equal
to the probability that an agent following that policy will achieve the desired reward thresh-
old. For a threshold of 500 to 800 words, the figure shows that the agent can achieve the
threshold with near certainty (> 95%). As the threshold increases, the probability of achiev-
ing the reward threshold decreases, but the optimal algorithm can still succeed over 50% of
the time when the threshold is set to 1200. The value drops off sharply after that point;
with the reward threshold set to 1500, the target is achieved less than 5% of the time. The
uniform-k policies perform worse as k increases; this is unsurprising since higher values of

134

k correspond to rougher approximations to the optimal policy. However, even uniform-100
has performance that is reasonably close to optimal.

Figure 7.6: Results when sampling using the Mean reward estimation function on the
reCAPTCHA domain, with time horizon h = 1000, values of k in {1, 10, 20, 50, 100}, and
thresholds ranging from 500–1500. The y-axis shows the proportion of 3,600 trials which
were successes. The success rate of the maximize-expected-rewards (“MER”) policy is also
shown.

Figure 7.6 shows the results of our sampling algorithm when the Mean function is used to
estimate the reward. Again, we have set the time horizon to h = 1000 steps and thresh-
olds ranging from 500–1500. For the sampling algorithm, k determines how often the agent
receives a reward sample, and is set to 1, 10, 20, 50, or 100. Sampling-1, which receives
a reward sample at every time step, is equivalent to the optimal policy. For each combi-
nation of k and threshold, we ran 3,600 trials; the graph shows the fraction of these trials
which were successes (i.e. in which the reward threshold was met). For comparison with
the non-thresholded-rewards solution, we also show the success rate of the policy that sim-
ply maximizes expected rewards (“MER”). The MER policy always chooses the standard
CAPTCHA challenge when the MDP is in the accurate or mixed states, and the two-known
challenge when the MDP is in the attack state. Since the MER policy does not depend on
the reward received so far, it chooses an action at every time step (as does sampling-1).

135

Figure 7.6 clearly shows that the sampling-based thresholded-rewards policy outperforms
the policy that maximizes expected rewards. However, there is a significant gap between
the sampling-based policies and the theoretical upper bounds shown in Figure 7.5. With
the Mean reward estimator, agents’ reward estimates are effectively “too optimistic” in
a significant number of trials. An agent that believes it has enough reward to meet the
threshold will begin to act conservatively, selecting the two-known CAPTCHA because the
two-known CAPTCHA cannot lead to negative reward. If the reward estimate is correct, this
is indeed the best strategy, but if the reward estimate is too high, the agent’s “complacent”
choice of the two-known CAPTCHA prevents it from achieving the remaining reward that
is needed. When the desired reward is relatively easy to achieve, the chance of incorrectly
falling into this “complacent” strategy is higher, explaining the relatively large gap between
the sampling-based policies and the theoretical upper bounds when the threshold value is
low.

Figure 7.7: Results when sampling using the Low reward estimation function on the re-
CAPTCHA domain, with time horizon h = 1000, values of k in {1, 10, 20, 50, 100}, and
thresholds ranging from 500–1500. The y-axis shows the proportion of 3,600 trials which
were successes.

Figure 7.7 shows the results of our sampling algorithm when the Low function is used to
estimate the reward. The Low function is more pessimistic with regard to the estimated

136

reward; it assumes that the average per-step reward is the lower bound of the 95% confidence
interval of the reward samples seen so far. Since the Low function underestimates the reward
(compared to Mean), an agent using the Low function is unlikely to erroneously fall into
the “complacent” strategy. The results indicate that the performance of the Low function is
better than the performance of Mean for almost every setting of k and the threshold value.
The performance of sampling-10 nearly matches the theoretical upper-bound of uniform-10.
As expected, the overall performance degrades as we take samples less often. However, even
sampling-100 significantly outperforms the maximize-expected-rewards policy, which is quite
impressive since the sampling-100 agent only receives 10 reward samples over the entire time
horizon.

These results show that there is a significant benefit to reasoning about reward and time in
thresholded-rewards domains, even if our agent only obtains a small sample of the reward
values received during execution.

7.5 Summary

In this chapter, we have presented a sampling-based algorithm that enables agents to reason
about cumulative rewards and time deadlines in domains where the exact rewards achieved
by the agent are not known to the agent at execution time. Our results in previous chapters
have been primarily directed towards zero-sum games; in this chapter we addressed a problem
that has a hard time deadline and a notion of “score”, but that is not a game and does not
have a specific opponent. Using the reCAPTCHA domain, we have shown that reasoning
about time and “score” can lead to a significant benefit, even if we only obtain a small
sample of reward values during execution time.

We have experimentally tested the effectiveness of two possible reward estimation functions:
Mean, which estimates cumulative reward by using the mean of all samples seen so far; and
Low, which estimates cumulative reward by using the lower bound of the 95% confidence
interval. If the Mean function happens to overestimate the reward achieved by the agent,
this can potentially cause the agent to adopt an overly conservative strategy, which detracts
from overall performance. In comparison, the Low function provides a somewhat pessimistic
estimate of the reward obtained by the agent, which prevents the agent from erroneously
adopting an overly conservative strategy.

137

138

Chapter 8

Related Work

In this chapter, we discuss lines of research related to the work presented in this thesis. Sec-
tion 8.1 presents previous results in the area of Markov decision processes (MDPs) and semi-
Markov decision processes (SMDPs). Section 8.2 discusses decision problems with alternative
objective functions, such as non-Markovian rewards and risk-sensitive utility functions. Sec-
tion 8.3 presents results from the general area of multi-robot teamwork; Sections 8.4 and 8.5
present specific results from the fields of robot soccer and American football.

8.1 Markov Decision Processes

Markov Decision Processes (MDPs) are a powerful tool for planning in the presence of
uncertainty [46]. MDPs provide a theoretically sound means of achieving optimal rewards
in uncertain domains. Since we interested in domains with stochastic actions, we make
significant use of MDPs in this thesis.

An MDP is represented as a tuple (S,A, T,R, s0). S is a set of states and A is a set of
actions. s0 is the initial state. T is the transition function; T (s, a, s′) → [0, 1] denotes
the probability of transitioning to state s′ when action a is executed in state s. R is the
reward function; R(s, a) denotes the reward received upon taking action a when in state s.
Alternatively, rewards can be found on the states, in which case the agent receives reward
R(s) upon entering state s. A policy is a mapping π : S ×N → A from 〈state, time〉 pairs
to actions. A stationary policy is a policy which does not depend on time; a policy that does
depend on time is called nonstationary or time-dependent [42].

139

The typical goal of decision making in an MDP is to find an optimal policy. In order to
do this, an optimality criterion (also known as an objective function) needs to be defined.
Many optimality criteria for MDPs have been proposed in the literature (see [34, 35, 46] for
extensive discussion). The most commonly used optimality criteria include:

• Expected cumulative reward

• Expected cumulative discounted reward

• Average reward rate (expected reward per time step).

In the expected cumulative reward and expected cumulative discounted reward frameworks,
the value of state s under policy π is denoted as:

V k
π (s) = E

[k∑
t=0

γtrt

]
, (8.1)

where rt is the reward received at time t, γ ∈ (0, 1] is a discount factor applied to future
rewards, and k is the horizon: the number of time steps until completion. When k = ∞,
we have an infinite-horizon problem; when k is finite, we have a finite-horizon problem. The
discount factor γ is generally used for the formulation of infinite-horizon problems; otherwise,
the cumulative reward is likely to grow without bound. For finite-horizon problems, such as
those addressed in this thesis, infinite rewards are not possible, so γ = 1 is typically used.

A common goal of decision making in an MDP is to find a policy π that maximizes V k
π (s)

for every s ∈ S. Such a policy is said to be optimal. The optimal value V k(s) of s is the
expected discounted future reward received when we start in state s and follow an optimal
policy. V k can be computed exactly using dynamic programming techniques; this process is
known as value iteration [4]. Value iteration uses the Bellman equation, which is:

V k+1(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V k(s′)
}
, (8.2)

where V 0(s) = 0. For the finite-horizon case with k timesteps remaining, V k allows us to
easily find the optimal next action from any state. However, the optimal action from a
given state may depend on the number of time steps remaining; such a policy is said to be
nonstationary. For the infinite-horizon case, V k converges to some V ∗ as k →∞ (for γ < 1).
A related method of computing the optimal policy is policy iteration [19], in which an initial
policy π is iteratively improved using the value function Vπ until it converges to the optimal
policy π∗ (with value V ∗).

140

MDPs assume that the agent is provided with an appropriate model of the environment
a priori; if this is not the case, the agent needs to learn about the environment online.
Reinforcement learning is one common method for doing so [22, 68, 79]. In model-free rein-
forcement learning, the agent learns a policy without learning a model of the environment;
in model-based reinforcement learning, the agent learns a model of the environment and uses
this model to derive a policy. In this thesis, we do not directly address the issues of on-
line reinforcement learning in thresholded-rewards domains. However, in Chapters 5 and
6 our models of the robot soccer and CTF domains are gathered empirically in an offline
fashion. This offline step finds an estimated transition function T̂ in a similar fashion to
online model-based reinforcement learning methods [41, 67]. Interval estimation has been
proposed as an effective means of trading off exploration and exploitation in reinforcement
learning [23,62,63,81]. We make use of an interval estimation approach in Chapter 7, utiliz-
ing the Low reward estimation function (Equation 7.3) to provide a conservative estimate
of the cumulative intermediate reward received during execution.

In this thesis, we also draw upon the theory of semi-Markov decision processes (SMDPs) [7,
29, 33, 44, 69]. Actions in SMDPs take variable amounts to time to complete. We model
our robot soccer and CTF plays as temporally-extended actions, since the amount of time
needed to score a point when executing a play from a given state is drawn from an arbitrary
distribution. Section 5.1 presents our formal definition of TRSMDPs; our formalism is
slightly different than that of other authors because we measure the transition functions
empirically, building models of our domains’ transition dynamics offline. Given a state/action
pair (s, a), the world produces an outcome (s′, dt, r). Our estimated transition function
T̂ (s, a) therefore returns a list of tuples of the form (p, s′, dt, r), where p is the probability of
transitioning to state s′ after dt time steps, receiving reward r, when action a is executed in
state s.

8.2 Decision Problems with Alternative Objective Func-

tions

Bacchus et al. introduced non-Markovian rewards as a way to assign rewards to behaviors
that extend over time [2]. They define non-Markovian reward decision processes (NMRDPs)
as a generalization of MDPs in which the reward function R takes in histories, of the form
〈s1, s2, . . . sn〉. Since the explicit specification of such a reward function is impossible (there
are an infinite number of possible histories), the authors use a temporal logic (PLTL) to
specify non-Markovian rewards. Since the value of an action depends on history, policies in
an NMRDP are a mapping from histories to actions. The authors present an algorithm for

141

converting an NMRDP into a standard MDP by “expanding” the MDP: annotating each
state with the additional history information needed to ascribe the rewards. There is a
tradeoff between the effort spent translating the MDP—producing a small equivalent MDP
without storage of irrelevant history—and the effort required to solve the result (since an
MDP with many unneeded states will take longer to solve using standard MDP solution
methods). Unfortunately, in the worst case, even the minimal expanded MDP may be ex-
ponentially larger than the base MDP. Some solution approaches specifically target factored
MDP representations or anytime heuristic search algorithms [1,71,72]. Thresholded rewards
are closely related to NMRDPs, as the thresholded-rewards objective function is also a form
of non-Markovian reward. However, with thresholded rewards, we are not interested in ac-
cumulating rewards based on the past history of the system. Instead, we are interested
in choosing actions based on the expected reward accumulated at some fixed point in the
future. We use a similar MDP-expansion technique to solve TRMDPs; however, the size of
our transformed MDP is only polynomially larger than the original MDP. In this thesis, we
present a value iteration algorithm that exploits the structure of our transformed MDP to
find the optimal policy in polynomial time.

Liu and Koenig discuss risk-sensitive utility functions for MDPs [30–32]. In this framework,
agents act to optimize utility, which is a monotonically nondecreasing function of reward.
These utility functions capture the risk attitudes of human decision makers. For example,
concave utility functions characterize risk-aversity; linear utility functions correspond to the
standard “maximize expected rewards” objective. Liu and Koenig provide exact algorithms
for finding optimal policies in domains with exponential utility functions and with one-switch
utility functions (which are combinations of a linear utility function and an exponential utility
function.) They also provide a functional value iteration algorithm that finds approximately
optimal policies for domains with piecewise linear utility functions. However, Liu and Koenig
do not explicitly address finite-horizon domains nor provide tight (e.g. polynomial) runtime
bounds on their solution algorithms.

Wagman and Conitzer apply a thresholded-rewards objective function to a one-shot strategic
betting domain [78]. In their domain, each agent i chooses a lottery (probability distribution)
over non-negative numbers with an expected value equal to its budget bi. Each agent then
receives reward according to its chosen probability distribution. The goal is to be the agent
with the highest outcome; an agent is assigned true reward of 1 for a win and 0 otherwise.
Wagman and Conitzer show that, if all n agents’ budgets are equal, there is a unique sym-
metric Nash equilibrium which maximizes the probability of winning for all players. If all
players play the equilibrium strategy, each player has a 1/n chance of winning. Wagman and
Conitzer further generalize their results to domains in which agents have unequal budgets,
costly budgets, and/or private budgets.

142

Broz et al. utilize semi-Markov POMDPs [21] to model the time-dependent behavior of
humans and robots in human-robot interaction domains [9]. They utilize a similar approach
to our own, adding time as a variable to the states of the POMDP. The resulting model can be
quite large, so Broz et al. introduce a state aggregation approach which operates exclusively
in the time dimension of the state space. States that are likely to lead to similar future
rewards are combined together. (See e.g. [28] for further discussion of state aggregation
techniques in MDPs.) Broz et al. provide experimental results, similar to ours in Chapter 4,
that show how the value of the policy in their domain decreases depending on the level of
time compression.

Sutton and Barto present a blackjack domain which is similar to a thresholded-rewards
problem [68]. In the blackjack domain, each hand proceeds until the end of the game, at
which time the agent receives a score of −1, 0, or +1 based on the current state. Each game is
of a finite (though not fixed) length. However, there is no notion of time in this domain—the
optimal policy is completely determined by the current state and is stationary with respect
to the amount of time that has passed. There is also no notion of intermediate reward—all
the reward is given at the end of a hand. In a thresholded-rewards problem, we are instead
interested in achieving a given intermediate reward within a finite amount of time. We can
view the blackjack domain as thresholded-rewards by setting an objective function like the
following: “Play 1000 hands of blackjack such that the probability of winning at least 500
hands is maximized.” With this objective function, we would expect that the blackjack-
playing agent’s strategy would change during the course of the 1000 hands, depending on
the actual wins and losses experienced so far.

8.3 Multi-Robot Teamwork

There is a wide variety of related research in the general fields of multi-robot teamwork
and coordination, and in the specific field of robot soccer in particular. Balch and Parker
survey a wide variety of multi-robot research, providing an overview of theoretical results as
well practical algorithms as implemented in a variety of real-world robot teams [3]. Dudek
et al. present a taxonomy of existing multi-robot systems, categorizing systems based on
whether the robots are centralized or decentralized, homogenous or heterogenous, the level
of communication used by the robots, and so on [10]. Gerkey and Mataric present a taxonomy
of multi-robot task allocation problems that is based on how many tasks a robot can execute
concurrently, how many robots are needed to complete each task, and whether the tasks
are assigned instantaneously [14, 15]. Our own role assignment algorithm is presented in
Section A.2 of Appendix A.

143

Many researchers have used multi-robot teams to address tasks such as providing surveillance
of a given area, monitoring the environment, or tracking multiple moving targets (e.g.,
[17, 20, 43, 60, 64–66, 73]). In Section 6.1 we present activity-recognition results from our
team of soccer-playing robots. Unlike most of these other approaches, our team performs
incidental activity recognition while engaged in a primary task other than monitoring the
other agents in the environment. Our robots’ observations of the environment and opponent
robots happen by “accident” as the team plays soccer. Compared to other approaches in
which the primary task is to investigate the environment, our RoboCup team does not
explicitly track the movements of other robots in the area nor attempt to maximize the
portion of the environment that is viewed.

8.4 Teamwork in Robot Soccer

Gerkey and Mataric discuss role assignment in robot soccer as of 2003, giving an overview of
the strategies used by teams in each of the RoboCup leagues [16]. In the four-legged league,
the predominant approach involved allocating three roles: an attacker, a defender, and some
sort of supporter. According to Gerkey’s survey, nearly all RoboCup teams assigned roles to
robots in a greedy fashion. For example, prior to 2004, our own team (CMPack) assigned
the roles in a fixed order using a well-defined objective function, namely first the attacker
role to the robot that could reach the ball most quickly, then the defender role to whichever
of the other two robots was closest to our own goal, and finally the supporter role to the
remaining robot [74]. To prevent robots from interfering with one another, the attacker
was the only robot allowed to actually approach the ball for a kick; the other robots would
position themselves in useful supporting locations. If the ball came near to another robot,
the team members would negotiate a role switch. After the role switch, the closest robot to
the ball would become the new attacker, and the attack would continue.

Many approaches to teamwork in RoboCup utilize global potential fields for robot coordina-
tion. Veloso et al. present an algorithm called SPAR (Strategic Positioning using Attraction
and Repulsion) which uses potential fields to repulse each robot from opponents and team-
mates, to attract each robot to the opponent goal and to the current position of the ball, and
to position in areas where it is possible to successfully receive a pass. The SPAR algorithm
was first used by CMU’s entries to the RoboCup simulation and small-size leagues in 1998,
and for several years thereafter. Prior to the introduction of plays, our CMPack AIBO team
also used potential fields to position the defender and supporter robots [74]. Potential field
approaches have also been utilized in the RoboCup middle-size league (e.g., [80]) and by
other teams in the four-legged league (e.g., [27]).

144

Bowling et al. introduce a play-based approach to teamwork for the RoboCup small-size
league [5, 8]. A play specifies a plan for the team; i.e., under some applicability conditions,
a play provides a sequence of steps for the team to execute. A team can be equipped with
multiple plays that achieve the same overall objective in different fashions; Bowling et al.
show that play selection weights can be adapted online to learn which alternatives work
well against a specific opponent [6]. Miller et al. have investigated a play-based approach
for human-robot interaction [40]. The small-size league has centralized control, an over-
head camera that provides an unobstructed view of the entire environment, and very fast
and precise low-level robot actions. In this thesis, we introduce a play-based approach to
teamwork for the RoboCup four-legged league. Since each robot in the four-legged league
is fully autonomous and there is no centralized control, our teamwork algorithms are de-
signed to operate within the constraints of a distributed team. Since the four-legged league
suffers from significantly more sensor and actuator noise than the small-size league, and
extensive communication is costly, we have designed our approach so that team members
operate in a relatively loosely-coupled and autonomous manner. Unlike other approaches,
we do not make use of global potential fields, but instead employ a region-based approach
in which each robot is assigned a region of the field and positions itself within that region in
a role-dependent manner.

After observing our play-based teamwork approach at the RoboCup 2005 world competition,
Quinlan et al. [48–50] developed a similar system for the NUbots team in 2006. Quinlan et
al. provide rules for autonomous strategy selection which are implemented as hand-coded
if-statements in the Python programming language, such as:

if (secondHalf and (oppScore > ownScore)):

scoreDiff = oppScore - ownScore

if (timeLeft/60.0 < scoreDiff):

newStrategy = AGGRESSIVE

Similar to our own region-based roles, the system presented by Quinlan et al. also assigns
robots to specific areas of the field. They test three plays experimentally: sweeper, which
is the play primarily used by NUbots in competition; offensive, in which all field players
move near the opponent goal; and hold, in which two players adopt defensive roles. They
find that the offensive play suffers from severe weaknesses, namely that the lack of defenders
makes it very difficult to score. The sweeper and hold plays have roughly similar perfor-
mance. In their experiments, Quinlan et al. use only goal count and shots on goal as their
performance metrics, and do not provide statistics on the time-to-score distribution for each
play combination or consider how play switching can be done in a manner that maximizes
the probability of winning the game.

145

Dylla et al. propose a soccer strategy language that formalizes the strategies and tactics
used by human soccer teams [11,12]. Their language allows soccer strategies to be specified
in an abstract way that does not depend strongly on the specific robot hardware used in
the competition. Our play system can be viewed as a strategy language that is applicable
to any distributed multi-robot system but that has been specifically tested in the RoboCup
four-legged league.

8.5 Strategic Decisions in American Football

The game of American football presents many different types of strategic decisions which
must be made by coaches on the field. Since football is a timed, zero-sum game, the optimal
decision in many situations depends on score and time. Many researchers have approached
these decisions in a theoretical fashion, finding optimal policies for specific decisions that
football coaches face.

Sackrowitz addresses the points-after-touchdown decision: after a touchdown, should a team
attempt to kick an extra point or go for a two-point conversion? [59] In practice, most
coaches make their decision based only on the score difference. For example, if the coach’s
team is ahead by 12 points after the touchdown, the coach usually chooses to go for a two-
point conversion. If the two-point conversion is successful, then the team will be ahead by
14 points (which is usually equal to two touchdowns). Sackrowitz introduces a dynamic-
programming model of American football games which aims to maximize the probability of
winning. According to this model, the optimal policy depends on time as well as score. For
instance, early in the game, a team that has just scored a touchdown and is now 12 points
ahead should kick the extra point rather than attempting a two-point conversion. Instead
of using real time, Sackrowitz’s model uses the number of possessions left in the game as
the time horizon. This is because otherwise they would need to estimate a probability
distribution for the length of a possession. Given our work on TRSMDPs, we could model
the domain more accurately by actually representing the length of a possession explicitly in
the model.

Krasker addresses three distinct strategic decisions in American football: whether to at-
tempt a two-point conversion, whether to try an onside kick, and whether to use a hurry-up
offense [26]. This work attempts to maximize the probability of winning, and the value
function depends on the time remaining. However, the model assumes that the time taken
for a drive follows a log-normal distribution; our work with SMDPs would let us accurately
model the true drive-length distribution as measured from empirical data. For the hurry-up
offense decision, they assume that the offense definitely finishes the drive before the end of

146

the game, no matter how much time is left; however, the less time is left, the lower the
chance of successfully scoring. With SMDPs, we could more accurately model the hurry-up
offense; we could also have drives that are explicitly meant to eat more time off the clock
than usual.

Romer [57] and Patek and Bertsekas [45] analyze additional strategic decisions in American
football, including choosing the optimal play on fourth down and maximizing the expected
score of a single drive. However, these researchers do not model score and time: they
are concerned only with maximizing expected score. While interesting, the work presented
in these papers is not immediately relevant to our goal of acting so as to maximize the
probability of winning.

8.6 Summary

In this chapter, we discussed lines of related research, including the theory of Markov decision
processes (MDPs) and semi-Markov decision processes (SMDPs), decision problems with
alternative objective functions, multi-robot teamwork, and approaches to teamwork and
strategy in robot soccer and American football.

147

148

Chapter 9

Conclusion

In this chapter, we conclude the thesis by reviewing the major scientific contributions of this
thesis and discussing promising directions for future research.

9.1 Contributions

This thesis makes the following scientific contributions:

• We formally define thresholded-rewards problems as a means to analyze the tradeoffs
between maximizing score and maximizing the true objective function (e.g., the proba-
bility of winning), in domains with limited time and some notion of score, progress, or
intermediate reward. In a domain with thresholded rewards, intermediate rewards are
received during execution. At the end of the time horizon, true reward is assigned by
applying an arbitrary user-defined threshold function to the total intermediate reward
accumulated during execution. The policy that maximizes the expected value of the
zero-sum threshold function (Equation 3.1) is the policy which maximizes the proba-
bility of winning a timed, zero-sum game. Similarly, the zero-one threshold function
(Equation 3.2) is used to find a policy which maximizes the probability of achieving
reward of at least k before the time horizon elapses.

• We present an algorithm which finds optimal policies for thresholded-rewards MDPs.
This algorithm takes an input a base MDP modeling the underlying dynamics of the

149

domain, a reward threshold function, and the length of the time horizon. The algo-
rithm creates an expanded MDP in which score and time are explicitly represented.
Applying value iteration to the expanded MDP efficiently finds the solution, producing
the optimal policy for the thresholded-rewards problem.

• We introduce three heuristic approximation techniques that find approximate solutions
to TRMDPs. These heuristics trade off computation time with solution quality, achiev-
ing performance close to the optimal solution while using significantly less computation
time.

• We present an exact algorithm for solving thresholded-rewards SMDPs. TRSMDPs
accurately model domains in which actions are temporally extended or in which the
amount of time taken to achieve a reward is drawn from an arbitrary distribution.

• We introduce incidental behavior recognition as an interesting problem arising in do-
mains with limited time and in which the primary task is not just to classify the
behavior of other agents operating in the same environment.

• We analyze how a team should change strategy in response to an opponent whose
behavior is initially unknown but slowly reveals itself during execution.

• We introduce a sampling-based control algorithm that allows for effective action in
domains with unknown rewards, which are hidden from the agent. We show that
reasoning about time and score can lead to a significant benefit, even if we only obtain
a small sample of reward values during execution time.

• We apply and evaluate our techniques in three different timed, finite-horizon domains:
robot soccer, Capture the Flag, and reCAPTCHA. With our real robot soccer team,
we perform proof-of-concept experiments that show that the choice of different plays
leads to significantly different outcomes against an opponent. We also test incidental
behavior recognition on the real robots, showing that the team can distinguish between
opponent plays despite the significant sensor noise experienced by the robots. We use
CTF extensively to find significant results supporting our TRSMDP approach, and
also to analyze how a team should behave when facing an opponent whose strategy
is initially unknown. Finally, we analyze 29 million human answers collected over six
months to produce a model of the reCAPTCHA domain. The reCAPTCHA domain
shows that our algorithms also apply to limited-time domains in which there is no
adversary. We also validate our sampling-based control algorithm in the reCAPTCHA
domain.

150

9.2 Future Directions

We enumerate a number of directions for future work closely related to the technical contri-
butions of this thesis.

• Full integration with the real robot soccer team. In this thesis, we measured
the time-to-score distributions for two different plays in our real robot soccer team;
based on these time-to-score distributions, we computed optimal policies for the robot
soccer domain. However, we have not performed any real-robot experiments which
empirically verify that our team actually achieves significantly more wins than losses
when playing the optimal policy. It would also be better to include more plays so
that the team has a greater variety of potential actions. Furthermore, it would be
better to collect more data and obtain more accurate time-to-score distributions. The
main problem here is simply one of logistics: in order to incorporate n plays, we need
to measure O(n2) time-to-score distributions; in order to find more accurate time-to-
score distributions, we need to run more games in each condition; and in order to find
that our team wins significantly more games, we need to run many games playing the
optimal strategy against each possible play. Since these games all need to be refereed
by a human, it is very time-consuming to run all these trials (in fact, competition
games are refereed by four humans). Furthermore, our robots are not designed to
handle playing for such extended periods of time—three robots were broken during the
course of the experiments presented in this thesis.

• Modeling the cost of switching plays. In both robot soccer and CTF, we have
observed that there is a cost to switching plays. Team members require time to recon-
figure themselves for their new roles. During this period of transition, the team can be
somewhat vulnerable, as multiple team members are out of their expected positions.
How can we model the fact that play transitions are not instantaneous? We could
consider measuring the time-to-score distributions induced during each transition from
px to py and explicitly factoring these into our model. We designed our robot soccer
team to limit the cost of play switching where possible, but we could consider further
research into how a team (in general) can transition smoothly from one team-level
behavior to another.

• The cost of imprecise opponent modeling. In this thesis, we assume that the
opponent’s possible play choices are the same as ours. In reality, some opponents can
certainly be characterized as more aggressive or more defensive than others, but it is
unlikely that their plays will be exactly the same as our own. Since there isn’t enough
time to learn the full opponent behavior online, our team will need to find the best

151

match between the opponent’s actual behavior and the closest opponent model we
have available. How much do we lose due to the fact that our model of the opponent’s
behavior is imperfect?

• Hierarchical reward threshold functions. In some domains, we are presented
with thresholds that are applied hierarchically or repeatedly. For example, in order to
win a single-elimination tournament, each individual game must be won. Rather than
maximizing the probability of winning a single game, we should aim to maximize the
probability of winning the entire tournament. If individual games are not independent,
or if there are actions that can be taken between games, it may be the case that the
optimal strategy is to purposely decrease the probability of winning one game in order
to increase the chances of winning future games. For example, perhaps playing as hard
as possible in an “easy” game increases the chance of injury; or perhaps we are hesitant
to reveal some strategy or capability early in the competition, thereby giving future
opponents the chance to adapt. Can we extend the algorithms presented in this thesis
to find optimal policies for domains with hierarchical thresholding?

• Incidental behavior recognition. In this thesis, we show that it is possible to
recognize the behavior of the opponent team incidentally, even though our team takes
no explicit actions in order to gather more information about the behavior of the
opponent team. This general problem of recognizing the behavior of an opponent online
(or of learning other things about the environment online), while being fully engaged in
a primary task of greater importance, leads to many open questions that touch on the
fields of multi-agent systems, model-based learning, and POMDPs. In a domain with
limited time, how does the accuracy of behavior recognition affect the probability of
successfully completing the primary task? Should our team trade off some short-term
performance in order to improve our model of the world and achieve better long-term
performance? In a multi-agent or multi-robot team, a team could consider allocating
some agents to perform the primary task and allocating other agents to assess the
performance of the others or to learn more about the environment. What is the best
way to do this allocation?

• Partially observable domains. In this thesis, we generally assume that the useful
state features for team-level strategy selection are significantly abstracted at a high
level, and that the state of the world is effectively fully observable. Clearly, these
assumptions are not valid in some domains—particularly when trying to recognize the
behavior of an opponent online. In such cases, the ideal approach would be to model
the domain as a POMDP with a thresholded-rewards objective function. We could
then use techniques similar to those introduced in this thesis, creating an expanded
POMDP annotated with score and time, in order to calculate optimal policies for
partially observable domains.

152

• Convergence results. In this thesis, we generally assume that the behavior of the
opponent is static—though in Chapter 6 we do consider a simple case of an opponent
that changes strategy during the course of a game. What is the effect if the opponent
changes strategy fully, based on score and time, as our team does? If the opponent
knows that our team will become more aggressive because our team is losing, perhaps
the opponent will become more defensive in response. If so, our team might increase
the probability of winning by becoming aggressive even sooner; then the opponent may
become defensive even sooner, and so on. If both sides apply this reasoning repeatedly,
there should be convergence to some optimal policy in which each side has the same
probability of winning. How can this policy be derived, and what will it look like in
different domains? There is a chance that the optimal policy could diverge with respect
to time, degenerating to something like “when winning, choose the most defensive play;
when losing, choose the most aggressive play; when tied, choose some balanced play.”

9.3 Concluding Remarks

In this thesis, we have contributed several algorithms which aim to address the challenges of
acting effectively in complex stochastic domains with limited time and some notion of score.
We have showed that the thresholded-rewards objective function is applicable to a variety
of decision problems, including zero-sum games and domains in which we aim to achieve a
given amount of reward. The solution to a thresholded-rewards decision problem provides
an optimal policy which enables an agent or team of agents to maximize the probability of
achieving their goals before the time deadline expires. The work presented in this thesis
has broad applications to domains possessing the key features of control under uncertainty,
limited time, and some notion of score.

153

154

Appendix A

Communication and Play-Based Role
Assignment in the RoboCup
Four-Legged League

In this appendix, we present additional details on the communication and coordination
strategies employed by our CMPack and CMDash entries to the RoboCup Four-Legged
League from 2004–2008. Although these algorithms and results are not directly related to
the main contributions of the thesis, we present them here in order to provide additional
groundwork and context for understanding our approach to robot soccer teamwork.

Section A.1 presents an overview of the various communication messages broadcast by each
member of our distributed team. These messages are used to build a world model that is
shared among all team members. Section A.2 presents full details of our distributed, play-
based role assignment approach for the RoboCup Four-Legged League. Section A.3 presents
experimental results showing that our role allocation algorithm assigns roles to robots in a
manner that is resistant to role oscillation.

A.1 Communication Strategies

Many multi-robot teams make use of communication for world state sharing. Due to the
AIBOs’ limited perception range and the extensive object occlusion in the RoboCup envi-
ronment, teams can benefit greatly by building a shared world model. A common approach,

155

used by our team in the past [58], is to have each robot periodically broadcast a packet
containing all the shared information, such as the robot’s current position, its best estimate
of the ball position, and the positions of detected opponent robots. However, some domain
information (such as the position of the ball) is inherently more important to the success of
the team than other types of information. We have therefore developed a factored commu-
nication strategy. In this strategy, there are several different types of message, containing
different pieces of information. We can then independently choose the transmission rate
for each type of message. This communication strategy allows the robots to respond more
quickly to important events (such as a change in the ball’s position) without the need to
transmit a large message over the communication network. We present here a brief overview
of the world-modeling information our robots shared in the RoboCup 2005 competition.

A.1.1 Ball Messages

These messages are sent by all robots to indicate important information about the status of
the ball. Each message contains the following information:

• Ball state. This feature was added to our world model for RoboCup 2005. This can
take on one of the following values:

– Lost: No reliable estimate of the ball’s location is available.

– Visible: The ball is currently seen.

– Possession: The ball is believed to be in the possession of the robot (i.e., the
robot has grabbed the ball and is lining up for a kick.)

– NotInFOV: The ball is not currently seen, but is not expected to be seen because
it is outside the robot’s field of view. This happens (e.g.) when a robot takes its
view off the ball to look at a localization marker.

– InFOVButMissing: The ball is not currently seen, even though the robot be-
lieves it is looking at the ball’s location.

– InFOVButOccluded: The ball is not currently seen, but the robot believes
that an object (such as another robot) is occluding the ball.

Our team sends these symbolic ball states instead of numerical confidence values. These
symbolic values allow the team to more accurately characterize the true state of the
ball.

• Whether the robot transmitting the message believes that it is lost. This is determined
by thresholding the robot’s localization uncertainty.

156

• The global position of the ball. Global ball position estimates are not used from any
robot that claims to be lost, since a lost robot is very likely to project its local ball
estimate to an incorrect global position.

• The position of the ball relative to the robot. If the ball is very close to the reach of
a robot, and that robot intends to kick the ball, the robot’s teammates should avoid
interfering with the kick, even if the robot believes that it is lost. The transmission of
relative ball locations allows robots to back off in this situation, without the need to
rely on visually seeing the teammate near the ball.

Since the location of the ball is of utmost importance to the proper functioning of the team,
the ball messages are sent frequently. A robot will send a new ball message every 1/8 second
if it has a good ball hypothesis and is not lost. If the robot becomes lost or does not have
a valid ball hypothesis, it waits a while longer to see if the situation improves. This is
done because a valid global ball location provides more valuable information to teammates.
After 1/4 second has passed, however, the robot sends a ball message regardless of the
circumstances.

A.1.2 Status Messages & Intentions

Another type of message is the status message. Status messages are sent by each robot at
periodic intervals (typically 4 Hz). They include the robot’s current position and angle (as
reported by localization) as well as the current “intention” of the robot. Intention is a very
important concept that we have added to our teamwork strategy. When a robot is very close
to the ball, its teammates should stay out of the way, to ensure that they do not interfere
with the attacker’s actions. However, there are specific times when nearby robots might
not be intending to go for the ball. In these cases, the teammates should not back away
just because another robot is near. The intention of the robot is determined by the robot’s
top-level behavior, and can take on any of the following values:

• Attack: the robot intends to approach the ball and manipulate it.

• Wait: the robot does not intend to approach the ball. This happens when a robot is
returning to position or is searching for the ball.

• Yield: the robot would intend to approach the ball, except that it is yielding to a
teammate instead.

157

A.1.3 Periodic Messages

Periodic messages are provided as a form of robustness to failure. The information contained
in periodic messages allow the robots to determine when network failures have occurred, when
a teammate has crashed, or other anomalous events have occurred. The team can then take
appropriate actions to ensure that team play degrades gracefully in the presence of failure.
The periodic message is typically sent at a rate of 1 Hz.

A.2 Distributed Play-Based Role Assignment

It is our experience that it is rather challenging to generate or learn a team control policy in
complex, highly dynamic (in particular adversarial), multi-robot domains. Therefore, instead
of approaching teamwork in terms of a mapping between state and joint actions [47,70], we
follow a play-based approach, as introduced by Bowling et al. [5,6,8]. A play-based approach
allows us to handle the domain challenges introduced in section 2. A play specifies a plan for
the team; i.e., under some applicability conditions, a play provides a sequence of steps for
the team to execute. Multiple plays can capture different teamwork strategies, as explicit
responses to different types of opponents. Bowling showed that play selection weights could
be adapted to match an opponent. Plays also allow the team to reason about the zero-sum,
finite-horizon aspects of a game-playing domain: the team can change plays as a function of
the score and time left in the game. Our play-based teamwork approach ensures that robots
do not suffer from hesitation nor oscillation, and that team performance is not significantly
degraded by possible periods of high network latency. We believe that ours is the first
distributed play-based teamwork approach within the context of the RoboCup four-legged
league.

A.2.1 Plays

A play is a team plan that provides a set of roles, which are assigned to the robots upon
initiation of the play. Bowling [6] introduced a play-based method for team coordination in
the RoboCup small-size league. However, the small-size league has centralized control of the
robots. One of the significant contributions of our work is the development of a play system
that works in a distributed team. The play language described by Bowling assumes that the
number of robots is fixed, and therefore always provides exactly four different roles for the
robots. In another extension to Bowling’s work, our plays also specify which roles are to be

158

used if the team loses some number of robots due to penalties or crashes. This extension to
the role-assignment aspects of Bowling’s play language allows the team to robustly adapt to
the loss or penalization of team members without the need for additional communication.
This is a particularly important extension for domains in which limited or high-latency
communication is the norm.

Our play language itself is also strongly inspired by the work of Bowling. Our language allows
us to define applicability conditions, which denote when a play is suitable for execution; what
roles should be assigned when we have a specific number of active robots on the team; and
a weight, which is used to decide which play to run when multiple plays are applicable.

Applicability. An applicability condition denotes when a play is suitable for execution.
Each applicability condition is a conjunction of binary predicates. A play may specify
multiple applicability conditions; in this case, the play is executable if any of the
separate applicability conditions are satisfied.

Roles. Each play specifies which roles should be assigned to a team with a variable number
of robots by defining different ROLES directives. A directive applies when a team has k
active robots, and specifies the corresponding k roles to be assigned. If a robot team
has n members, each play has a maximum of n ROLES directives. Since our AIBO
teams are composed of four robots, our plays have four ROLES directives.

Weight. Weight is used to decide which play to run when multiple plays are applicable. In
our initial approach, the play selector always chooses the applicable play with greatest
weight. We could also consider choosing plays probabilistically based on the weight
values or updating the weights at execution time to automatically improve team per-
formance. Playbook adaptation of this sort was introduced by Bowling et al. for the
small-size league [6].

Unlike the work of Bowling, we do not have DONE or TIMEOUT keywords that specify when
a play is complete. Rather, the play selector runs continuously, and each play is considered
to be complete as soon as a different play is chosen. This may happen because the current
play is no longer applicable or because another play with greater weight has recently become
applicable. Each predicate used in an applicability condition is designed with some hysteresis,
such that it is not possible for the predicate to rapidly oscillate between true and false. The
predicates used in our approach depend on features of the environment—such as the time
left in game, the number of goals scored by each team, and the number of robots available to
each team—that by their nature cannot rapidly oscillate. This ensures that the play choice
also cannot rapidly oscillate.

159

PLAY Guard

APPLICABLE winning fewerPlayers

APPLICABLE secondHalf winningBy2OrMoreGoals

ROLES 1 Goalkeeper

ROLES 2 Goalkeeper Defender

ROLES 3 Goalkeeper Defender Independent

ROLES 4 Goalkeeper Defender Midfielder Independent

WEIGHT 3

Figure A.1: An example play with multiple applicability conditions.

Default: Goalkeeper Defender Striker Independent

Defensive: Goalkeeper Defender Midfielder Independent

Guard: Goalkeeper Defender MidfieldDefender Independent

Flankers: Goalkeeper Defender LeftFlanker RightFlanker

Aggressive: Goalkeeper LeftFlanker RightFlanker Independent

PullGoalie: Midfielder LeftFlanker RightFlanker Independent

Kickoff: Goalkeeper Defender Charger KickoffDodger

Figure A.2: Summary of the seven plays used by our team in RoboCup 2005.

Figure A.1 shows an example of a defensive play. Its applicability conditions specify that
this play is applicable 1) when our team is winning and has fewer active players than the
opponents or 2) when the game is in the second half and our team is winning by at least
two points. If we have only one active robot on our team, we will assign it the Goalkeeper
role; if we have two robots, one is assigned the Goalkeeper role and the other is assigned the
Defender role; and so on. We have developed a total of sixteen plays, but not all were used
in the RoboCup 2005 competition. Figure A.2 shows a summary of the seven plays that
were used in the competition. (Only the roles used for a 4-robot team are shown.)

A.2.2 Play Selector

The play selector runs on one robot that is arbitrarily chosen to be the leader. The play
selector chooses which play the team should be running. The leader periodically broadcasts
the current play (and role assignments) to its teammates. Distributed play-based coordi-
nation is achieved through a predefined agreement among the team members to resort to a
default play if a robot doesn’t hear a play broadcast within a communication time limit. A

160

• Game result predicates:
winning, losing, winningByTwoOrMore, losingByTwoOrMore.

• Game state predicates:
ourKickoff, opponentKickoff, fewerPlayers, morePlayers.

• Temporal predicates:
firstHalf, secondHalf, <2MinutesRemaining, <1MinuteRemaining,

Figure A.3: Predicates used in the applicability conditions of plays.

SELECT_PLAY(S: world state, P: playbook, D: default play):

BEST_PLAY <- D

BEST_WEIGHT <- WEIGHT(D)

for each PLAY in P:

if WEIGHT(PLAY) > BEST_WEIGHT:

for each CONDITIONS in APPLICABLE(PLAY):

if all CONDITIONS are satisfied in STATE:

BEST_PLAY <- PLAY

BEST_WEIGHT <- WEIGHT(PLAY)

return BEST_PLAY

Figure A.4: Algorithm used by the play selector.

failure of the leader or a network problem may trigger this default coordination plan. A more
sophisticated approach could incorporate an algorithm for leader selection in the event of
failure. However, we did not pursue such an approach for the work presented in this thesis.
The algorithm used by the play selector is presented in Figure A.4.

A.2.3 Role Allocator

The selection of a play determines which roles need to be allocated to the robots. However,
it does not specify which robots should be assigned to each role. Therefore, a role allocation
algorithm is still needed to assign the roles. This algorithm also runs on the leader robot,
which broadcasts the assignment along with the selected play. Our role allocator has two
features that differentiate it from those used by many other RoboCup teams [16]. First, it
only runs when a play is initially selected, as opposed to continuously. Second, it allocates
roles in a role-preserving manner – minimizing role switching. Formally, if a new play Pt is

161

selected at time t, and Pt specifies n roles {R1..n} for the n robots r1..n, and ri was already
assigned to Rj in Pt−1, ri is guaranteed to still be assigned to Rj in Pt. (Any remaining roles
can be allocated in a greedy fashion.) If two plays share some roles, this strategy guarantees
that some of the robots can assume their new roles without any transitional cost. These
features provide additional resistance to oscillation in cases in which two plays share common
roles.

The play selector and role allocator combine to form our team’s overall coordination strategy.
The play selector PlaySel is a function that takes in the game state s and outputs a set
R of roles. The role allocator RoleAlloc is another function; it takes in the state s and
the set R of roles specified by the play selector, and assigns each role in R to a robot on the
team. Formally, we have:

Π : s→ RoleAlloc(s,PlaySel(s)), (A.1)

which evaluates to a vector of specific roles for each robot:

Π : s→ 〈r1, r2, . . . , rn〉. (A.2)

A.2.4 Roles

The role assigned to each robot determines what behaviors the robot actually runs. Our
approach, initially used in RoboCup 2005, is unique in that it is region-based : each robot
is assigned to a region of the field. A robot is primarily responsible for going after the ball
whenever the ball is in that robot’s region. Roles are designed simply by configuring a generic
“Player” behavior with appropriate settings for that role. The configurable items include:

• Region: an area of the field that the robot is responsible for covering.

• Ball in Region Policy: the behavior the robot should adopt when it knows that the
ball is in its region. Typically, this will involve approaching the ball and trying to clear
it downfield or to take a shot on goal.

• Ball out of Region Policy: the behavior the robot should adopt when it knows that
the ball is not in its region. Some roles specify that a robot is simply to return to a
home position, while other roles may have the robot move to block the path between
the ball and the goal, or to position for a pass.

• Ball Lost Policy: the behavior the robot should adopt when it believes the ball is lost.
This is typically some sort of searching behavior.

162

As an example of how these policies combine together to combine a complete player, we
consider the behavior of the Defender role in detail. The defender’s region includes the area
outside the goal box but still near the goal. The defender will use ball estimates from any
of its teammates, but puts preference on ball positions reported by the goalkeeper. When
the ball is in its region, the defender approaches it in an attempt to clear. When the ball
is not in its region, the defender takes a position between the ball and the goal, such that
it is ready to interfere with any threats posed by the opponents. When the ball is lost, the
defender returns to a home position in front of the goal and spins in place.

Unlike our previous approaches, robots no longer need to negotiate with one another in
order to gain the attacker role that allows them to approach the ball. In this way, the
performance of the team does not degrade significantly under high network latency. We
have developed algorithms that prevent the robots from interfering with one another even
when they are playing in overlapping regions. To provide robustness against communication
failure, these algorithms are designed to operate without the need for communication, using
local information such as a robot’s vision of its own teammates. If communication is available,
our robots use additional features (such as reported teammate positions) that provide added
confidence that our robots will not interfere with one another.

A.3 Experimental Results

We have previously presented empirical results that support the feasibility and effectiveness
of multiple plays in the RoboCup four-legged league [37]. In Section A.2.3, we contribute
a role allocation algorithm, claiming that this algorithm addresses hesitation due to role
oscillation by preserving a robot’s role when possible. We show experimental evidence that
supports this particular claim.

In each experimental trial, three robots work together in a robot soccer task, namely ball
advancement – moving the ball towards the opposing goal as quickly as possible. Figure A.5
shows the initial position of the robots, from which the team advances the ball down the
field towards the goal. A trial is considered complete when either a goal is scored, the ball
advances past the opponents’ back line, or the ball hits one of the goal posts. The time of
each completed trial is measured.

We test the robots’ teamwork in three different team play configurations: (i) a single
Defender-Striker-Independent play; (ii) a single Defender-Midfielder-Independent play; and
(iii) switching every five seconds between the two plays in (i) and (ii). Since these two
plays share two roles (defender and independent), we expect that, even with frequent play

163

Figure A.5: Initial position for each experimental trial. The three robots are placed in three
positions on the field, with the ball in the defense area. The experiment proceeds until the
robots advance the ball past the end line of the opposite half of the field.

switching, our role assignment algorithm will not adversely affect the performance of the
team.

Each configuration was tested for 40 completed trials, for a total of 120 experiments. Fig-
ure A.6 summarizes the results. The fastest and slowest times achieved in any trial were
17.18 and 70.15 seconds, respectively. The Defender-Striker-Independent play performs best
at this task, completing each trial in a mean time of 31.06 seconds. The Defender-Midfielder-
Independent play performs more slowly, completing each trial in a mean time of 35.05 sec-
onds. The difference between these times is significant (determined by Student’s two-tailed
t-test, with p = 0.048). When the robots oscillate between these two plays, their performance
remains good, with the mean time of the switching case (33.29 seconds) between the mean
times of the other two cases. Since the play-switching case still performs better than the
worse of the two plays, we note that there is no significant detrimental effect on performance.

164

Def-Str-Ind Def-Mid-Ind Oscillating
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

T
a
s
k
 c

o
m

p
le

ti
o
n
 t

im
e
 (

s
e
c
o
n
d
s
)

Figure A.6: Experimental results for the Defender-Striker-Independent play, Defender-
Midfielder-Independent play, and switching between the two plays. The figure shows the
means and 90% confidence intervals for each case.

A.4 Conclusion

In this chapter, we have presented the communication and world modeling strategies which
were utilized by our robot soccer team from 2005–2008. These improvements place high
priority on the communication of task-relevant data and enure that the robots communicate
some useful information even when lost. We have also presented the details of a distributed
play-based role assignment algorithm, which has been implemented on a distributed team of
robots for the RoboCup four-legged league. This algorithm aims to solve several important
general distributed multi-robot challenges, including the presence of adversaries, task-based
temporal constraints, and robustness to network failure. We have presented experimental
results that show that our role-preserving assignment algorithm allows a team to perform
well even when plays are rapidly changed.

The presented role-assignment algorithm and plays have been tested in the RoboCup 2005
competition. Our team came in fourth place in a challenging competition of twenty-four
teams. Our team typically rotated through three well-balanced plays in the first minutes
of each game, which allowed us to see the performance of each play against the specific
opponent. As a form of adjustable autonomy, we could manually change the team’s strategy
at halftime or during a timeout.

165

Our role assignment system is unique in that it allows role assignments to happen to all
robots, including the goalkeeper. If there is not much time left in the game and our team is
losing, we have plays that will “pull” the goalkeeper out of the goal box, which provides us
with another field player that could score a goal. In fact, in the 3rd-4th place game of the
RoboCup 2005 competition, our goalkeeper robot nearly scored a goal in the final seconds
of the game.

166

Appendix B

Capture the Flag Experiment Data

In this appendix, we present the full results of our the Capture the Flag experiments. Sec-
tion B.1 presents the results of our initial test of eleven CTF plays. Section B.2 presents
the time-to-score distributions for each of 36 play combinations. Section B.3 presents the
optimal policies against each of the six CTF opponents. Discussion and analysis of these
results is presented throughout Chapter 5.

B.1 11-Play Preliminary Experiment Data

blue config red config blue wins red wins ties blue score red score
A0 M0 D5 A0 M0 D5 0 0 500 0 0
A0 M0 D5 A0 M1 D4 0 0 500 0 0
A0 M0 D5 A1 M0 D4 0 90 410 0 104
A0 M0 D5 A1 M1 D3 0 59 441 0 65
A0 M0 D5 A2 M0 D3 0 135 365 0 171
A0 M0 D5 A2 M1 D2 0 334 166 0 557
A0 M0 D5 A3 M0 D2 0 392 108 0 814
A0 M0 D5 A3 M1 D1 0 387 113 0 774
A0 M0 D5 A4 M0 D1 0 414 86 0 996
A0 M0 D5 A4 M1 D0 0 417 83 0 982
A0 M0 D5 A5 M0 D0 0 444 56 0 1208
A0 M1 D4 A0 M0 D5 0 0 500 0 0
A0 M1 D4 A0 M1 D4 0 0 500 0 0

167

A0 M1 D4 A1 M0 D4 0 37 463 0 37
A0 M1 D4 A1 M1 D3 0 32 468 0 32
A0 M1 D4 A2 M0 D3 0 110 390 0 126
A0 M1 D4 A2 M1 D2 0 227 273 0 306
A0 M1 D4 A3 M0 D2 0 326 174 0 557
A0 M1 D4 A3 M1 D1 0 332 168 0 559
A0 M1 D4 A4 M0 D1 0 381 119 0 767
A0 M1 D4 A4 M1 D0 0 384 116 0 771
A0 M1 D4 A5 M0 D0 0 415 85 0 986
A1 M0 D4 A0 M0 D5 77 0 423 100 0
A1 M0 D4 A0 M1 D4 42 0 458 46 0
A1 M0 D4 A1 M0 D4 150 145 205 455 485
A1 M0 D4 A1 M1 D3 18 247 235 51 449
A1 M0 D4 A2 M0 D3 86 295 119 559 1114
A1 M0 D4 A2 M1 D2 12 437 51 209 1633
A1 M0 D4 A3 M0 D2 64 382 54 1041 2179
A1 M0 D4 A3 M1 D1 28 429 43 587 2201
A1 M0 D4 A4 M0 D1 292 152 56 2886 2307
A1 M0 D4 A4 M1 D0 29 433 38 854 2565
A1 M0 D4 A5 M0 D0 464 21 15 5029 2188
A1 M1 D3 A0 M0 D5 65 0 435 76 0
A1 M1 D3 A0 M1 D4 40 0 460 43 0
A1 M1 D3 A1 M0 D4 255 18 227 497 64
A1 M1 D3 A1 M1 D3 35 54 411 52 72
A1 M1 D3 A2 M0 D3 251 53 196 566 168
A1 M1 D3 A2 M1 D2 127 139 234 251 279
A1 M1 D3 A3 M0 D2 325 65 110 1090 376
A1 M1 D3 A3 M1 D1 260 89 151 764 417
A1 M1 D3 A4 M0 D1 486 2 12 3315 397
A1 M1 D3 A4 M1 D0 269 100 131 1007 570
A1 M1 D3 A5 M0 D0 497 0 3 5991 333
A2 M0 D3 A0 M0 D5 148 0 352 196 0
A2 M0 D3 A0 M1 D4 104 0 396 122 0
A2 M0 D3 A1 M0 D4 278 85 137 1083 589
A2 M0 D3 A1 M1 D3 52 249 199 147 538
A2 M0 D3 A2 M0 D3 198 190 112 1151 1133
A2 M0 D3 A2 M1 D2 72 337 91 580 1400

168

A2 M0 D3 A3 M0 D2 235 202 63 1961 1889
A2 M0 D3 A3 M1 D1 111 313 76 1273 1964
A2 M0 D3 A4 M0 D1 457 21 22 4540 1977
A2 M0 D3 A4 M1 D0 116 318 66 1667 2490
A2 M0 D3 A5 M0 D0 495 1 4 6676 1725
A2 M1 D2 A0 M0 D5 331 0 169 546 0
A2 M1 D2 A0 M1 D4 225 0 275 296 0
A2 M1 D2 A1 M0 D4 447 11 42 1622 174
A2 M1 D2 A1 M1 D3 119 143 238 238 270
A2 M1 D2 A2 M0 D3 354 69 77 1448 583
A2 M1 D2 A2 M1 D2 203 177 120 697 672
A2 M1 D2 A3 M0 D2 396 54 50 2237 846
A2 M1 D2 A3 M1 D1 333 100 67 1589 870
A2 M1 D2 A4 M0 D1 497 0 3 5360 514
A2 M1 D2 A4 M1 D0 360 74 66 2121 1022
A2 M1 D2 A5 M0 D0 499 0 1 7838 278
A3 M0 D2 A0 M0 D5 364 0 136 681 0
A3 M0 D2 A0 M1 D4 332 0 168 533 0
A3 M0 D2 A1 M0 D4 359 70 71 2014 1028
A3 M0 D2 A1 M1 D3 57 323 120 391 1066
A3 M0 D2 A2 M0 D3 200 223 77 1883 1973
A3 M0 D2 A2 M1 D2 57 402 41 883 2213
A3 M0 D2 A3 M0 D2 226 218 56 2727 2669
A3 M0 D2 A3 M1 D1 66 389 45 1593 2994
A3 M0 D2 A4 M0 D1 458 24 18 5347 2393
A3 M0 D2 A4 M1 D0 65 394 41 1933 3547
A3 M0 D2 A5 M0 D0 497 1 2 7228 2011
A3 M1 D1 A0 M0 D5 378 0 122 771 0
A3 M1 D1 A0 M1 D4 328 0 172 515 0
A3 M1 D1 A1 M0 D4 430 31 39 2040 535
A3 M1 D1 A1 M1 D3 83 248 169 364 714
A3 M1 D1 A2 M0 D3 296 134 70 1892 1339
A3 M1 D1 A2 M1 D2 103 320 77 884 1524
A3 M1 D1 A3 M0 D2 385 72 43 2939 1614
A3 M1 D1 A3 M1 D1 181 224 95 1700 1792
A3 M1 D1 A4 M0 D1 499 0 1 6288 855
A3 M1 D1 A4 M1 D0 281 147 72 2447 1947

169

A3 M1 D1 A5 M0 D0 499 0 1 8442 503
A4 M0 D1 A0 M0 D5 422 0 78 1048 0
A4 M0 D1 A0 M1 D4 368 0 132 713 0
A4 M0 D1 A1 M0 D4 138 288 74 2207 2832
A4 M0 D1 A1 M1 D3 2 489 9 359 3320
A4 M0 D1 A2 M0 D3 31 454 15 1997 4530
A4 M0 D1 A2 M1 D2 0 498 2 485 5380
A4 M0 D1 A3 M0 D2 17 475 8 2397 5325
A4 M0 D1 A3 M1 D1 0 500 0 863 6340
A4 M0 D1 A4 M0 D1 241 211 48 4586 4499
A4 M0 D1 A4 M1 D0 0 500 0 1100 6902
A4 M0 D1 A5 M0 D0 450 31 19 6502 3442
A4 M1 D0 A0 M0 D5 406 0 94 963 0
A4 M1 D0 A0 M1 D4 398 0 102 745 0
A4 M1 D0 A1 M0 D4 435 27 38 2586 846
A4 M1 D0 A1 M1 D3 77 286 137 484 1089
A4 M1 D0 A2 M0 D3 312 132 56 2419 1757
A4 M1 D0 A2 M1 D2 63 380 57 1048 2165
A4 M1 D0 A3 M0 D2 393 68 39 3615 1995
A4 M1 D0 A3 M1 D1 153 286 61 1872 2433
A4 M1 D0 A4 M0 D1 500 0 0 6955 1055
A4 M1 D0 A4 M1 D0 202 236 62 2571 2594
A4 M1 D0 A5 M0 D0 500 0 0 8730 743
A5 M0 D0 A0 M0 D5 434 0 66 1227 0
A5 M0 D0 A0 M1 D4 407 0 93 896 0
A5 M0 D0 A1 M0 D4 12 470 18 2231 5065
A5 M0 D0 A1 M1 D3 1 496 3 312 5814
A5 M0 D0 A2 M0 D3 1 499 0 1751 6755
A5 M0 D0 A2 M1 D2 0 500 0 262 7892
A5 M0 D0 A3 M0 D2 1 497 2 1944 7325
A5 M0 D0 A3 M1 D1 0 500 0 444 8538
A5 M0 D0 A4 M0 D1 23 466 11 3371 6542
A5 M0 D0 A4 M1 D0 0 500 0 727 8763
A5 M0 D0 A5 M0 D0 222 250 28 5261 5352

170

B.2 Time-To-Score Distributions

171

Figure B.1: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A0 M1 D4, for each possible red play.

172

Figure B.2: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A0 M1 D4, for each possible red play. This figure presents the
same data as Figure B.1, but the y-axis is zoomed in.

173

Figure B.3: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A1 M1 D3, for each possible red play.

174

Figure B.4: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A1 M1 D3, for each possible red play. This figure presents the
same data as Figure B.3, but the y-axis is zoomed in.

175

Figure B.5: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A2 M1 D2, for each possible red play.

176

Figure B.6: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A2 M1 D2, for each possible red play. This figure presents the
same data as Figure B.5, but the y-axis is zoomed in.

177

Figure B.7: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A3 M1 D1, for each possible red play.

178

Figure B.8: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A3 M1 D1, for each possible red play. This figure presents the
same data as Figure B.7, but the y-axis is zoomed in.

179

Figure B.9: Time-to-score distributions for the blue team (top) and for the red team (bot-
tom) when the blue team plays A4 M1 D0, for each possible red play.

180

Figure B.10: Time-to-score distributions for the blue team (top) and for the red team
(bottom) when the blue team plays A4 M1 D0, for each possible red play. This figure presents
the same data as Figure B.9, but the y-axis is zoomed in.

181

Figure B.11: Time-to-score distributions for the blue team (top) and for the red team
(bottom) when the blue team plays A5 M0 D0, for each possible red play.

182

Figure B.12: Time-to-score distributions for the blue team (top) and for the red team
(bottom) when the blue team plays A5 M0 D0, for each possible red play. This figure presents
the same data as Figure B.11, but the y-axis is zoomed in.

183

B.3 Optimal Policies

Figure B.13: The optimal policy for the CTF domain, assuming that the opponent plays
A0 M1 D4 for the entire game. The y-axis shows the number of time steps remaining; the
x-axis shows the cumulative intermediate reward (score difference).

184

Figure B.14: The optimal policy for the CTF domain, assuming that the opponent plays
A1 M1 D3 for the entire game. The y-axis shows the number of time steps remaining; the
x-axis shows the cumulative intermediate reward (score difference).

185

Figure B.15: The optimal policy for the CTF domain, assuming that the opponent plays
A2 M1 D2 for the entire game. The y-axis shows the number of time steps remaining; the
x-axis shows the cumulative intermediate reward (score difference).

186

Figure B.16: The optimal policy for the CTF domain, assuming that the opponent plays
A3 M1 D1 for the entire game. The y-axis shows the number of time steps remaining; the
x-axis shows the cumulative intermediate reward (score difference).

187

Figure B.17: The optimal policy for the CTF domain, assuming that the opponent plays
A4 M1 D0 for the entire game. The y-axis shows the number of time steps remaining; the
x-axis shows the cumulative intermediate reward (score difference).

188

Figure B.18: The optimal policy for the CTF domain, assuming that the opponent plays
A5 M0 D0 for the entire game. The y-axis shows the number of time steps remaining; the
x-axis shows the cumulative intermediate reward (score difference).

189

190

Bibliography

[1] F. Bacchus, C. Boutilier, and A. Grove. Structured solution methods for non-Markovian
decision processes. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 1997.

[2] Fahiem Bacchus, Craig Boutilier, and Adam Grove. Rewarding behaviors. In Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), pages
1160–1167, Portland, Oregon, USA, 1996. AAAI Press / The MIT Press.

[3] Tucker Balch and Lynne Parker. Robot Teams: From Diversity to Polymorphism. AK
Peters, 2002.

[4] Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[5] Michael Bowling, Brett Browning, Allen Chang, and Manuela Veloso. Plays as team
plans for coordination and adaptation. In D. Polani, B. Browning, A. Bonarini, and
K. Yoshida, editors, RoboCup 2003: Robot Soccer World Cup VII, volume 3020 of
Lecture Notes in Computer Science, pages 686–693. Springer Verlag, Berlin, Germany,
2004.

[6] Michael Bowling, Brett Browning, and Manuela Veloso. Plays as team plans for co-
ordination and adaptation. In Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS-04), June 2004.

[7] Steven J. Bradtke and Michael O. Duff. Reinforcement learning methods for continuous-
time markov decision problems. In Advances in Neural Information Processing Systems,
pages 393–400. MIT Press, 1995.

[8] Brett Browning, James Bruce, Michael Bowling, and Manuela Veloso. STP: Skills,
tactics and plays for multi-robot control in adversarial environments. IEEE Journal of
Control and Systems Engineering, 219:33–52, 2005.

191

[9] Frank Broz, Illah Nourbakhsh, and Reid Simmons. Planning for human-robot interac-
tion using time-state aggregated POMDPs. In Proceedings of the Twenty-Third Con-
ference on Artificial Intelligence (AAAI-08), July 2008.

[10] G. Dudek, M. Jenkin, and E. Milios. A taxonomy of multi-robot systems. In Tucker
Balch and Lynne Parker, editors, Robot Teams: From Diversity to Polymorphism. AK
Peters, 2002.

[11] F. Dylla, A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer, F. Stolzenburg,
U. Visser, and T. Wagner. Towards a league-independent qualitative soccer theory for
RoboCup. In RoboCup 2004: Robot Soccer World Cup VIII, Lecture Notes in Computer
Science. Springer Verlag, Berlin, Germany, 2005.

[12] Frank Dylla, Alexander Ferrein, Gerhard Lakemeyer, Jan Murray, Oliver Obst, Thomas
Röfer, Stefan Schiffer, Frieder Stolzenburg, Ubbo Visser, and Thomas Wagner. Com-
puters in Sport, chapter Approaching a Formal Soccer Theory from the Behavior Spec-
ification in Robotic Soccer, pages 161–186. Bioengineering. WIT Press, 2008. ISBN
978-1-84564-064-4.

[13] Juan Fasola and Manuela Veloso. Real-time object detection using segmented and
grayscale images. In Proceedings of the 2006 IEEE International Conference on Robotics
and Automation (ICRA 2006), May 2006.

[14] Brian P. Gerkey. On Multi-Robot Task Allocation. PhD thesis, University of Southern
California, 2003.

[15] Brian P. Gerkey and Maja J Mataric. A formal analysis and taxonomy of task allocation
in multi-robot systems. Intl. Journal of Robotics Research, 23(9):939–954, Sep 2004.

[16] Brian P. Gerkey and Maja J. Mataric. On role allocation in RoboCup. In D. Polani,
B. Browning, A. Bonarini, and K. Yoshida, editors, RoboCup 2003: Robot Soccer World
Cup VII, volume 3020 of Lecture Notes in Computer Science, pages 43–53. Springer
Verlag, Berlin, Germany, 2004.

[17] Kwun Han and Manuela Veloso. Automated robot behavior recognition applied to
robotic soccer. In Robotics Research: the Ninth International Symposium, pages 199–
204. Springer-Verlag, 2000.

[18] T.H. Ho, C. Camerer, and K. Weigelt. Iterated dominance and iterated best response
in experimental “p-beauty contests”. American Economic Review, pages 947–969, 1998.

[19] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

192

[20] M. Ani Hsieh, Anthony Cowley, James F. Keller, Luiz Chaimowicz, Ben Grocholsky,
Vijay Kumar, Camillo J. Taylor, Yoichiro Endo, Ronald C. Arkin, Boyoon Jung, De-
nis F. Wolf, Gaurav S. Sukhatme, and Douglas C. MacKenzie. Adaptive teams of
autonomous aerial and ground robots for situational awareness: Field reports. Journal
of Field Robotics, 24(11-12):991–1014, 2007.

[21] Leslie P. Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable domains. Artificial Intelligence, 1998.

[22] Leslie P. Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 1996.

[23] Leslie Pack Kaelbling. Learning in Embedded Systems. MIT Press, 1993.

[24] H. Kitano, M. Fujita, S. Zrehen, and K. Kageyama. Sony legged robot for RoboCup
challenge. In 1998 IEEE International Conference on Robotics and Automation, vol-
ume 3, 1998.

[25] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
RoboCup: The robot World Cup initiative. In Proc. of the First Intl. Conf. on Au-
tonomous Agents (Agents ’97), 1997.

[26] William S. Krasker. Football commentary: Dynamic programming model. http://

www.footballcommentary.com/dynamicprogramming.htm, 2004.

[27] Tim Laue and Thomas Röfer. A behavior architecture for autonomous mobile robots
based on potential fields. In 8th Intl. Workshop on RoboCup 2004, Lecture Notes in Arti-
ficial Intelligence, Lecture Notes in Computer Science, Berlin, Germany, 2004. Springer
Verlag.

[28] Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a unified theory of state
abstraction for MDPs. In Ninth International Symposium on Artificial Intelligence and
Mathematics, 2006.

[29] S.A. Lippman. Semi-Markov decision processes with unbounded rewards. Management
Science, pages 717–731, 1973.

[30] Yaxin Liu and Sven Koenig. Existence and finiteness conditions for risk-sensitive plan-
ning: Results and conjectures. In Proceedings of Uncertainty in Artificial Intelligence,
2005.

[31] Yaxin Liu and Sven Koenig. Functional value iteration for decision-theoretic planning
with general utility functions. In Proceedings of the Twenty-First National Conference
on Artificial Intelligence (AAAI-06), July 2006.

193

http://www.footballcommentary.com/dynamicprogramming.htm
http://www.footballcommentary.com/dynamicprogramming.htm

[32] Yaxin Liu and Sven Koenig. An exact algorithm for solving MDPs under risk-sensitive
planning objectives with one-switch utility functions. In AAMAS ’08: Proceedings of
the 7th International Joint Conference on Autonomous agents and Multiagent Systems,
pages 453–460, Richland, SC, 2008. International Foundation for Autonomous Agents
and Multiagent Systems.

[33] S. Mahadevan, N. Marchalleck, T.K. Das, and A. Gosavi. Self-improving factory simu-
lation using continuous-time average-reward reinforcement learning. In Proceedings of
the Fourteenth International Conference on Machine Learning, 1997.

[34] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algorithms,
and empirical results. Machine Learning, 22(1-3):159–195, 1996.

[35] Sridhar Mahadevan. Optimality criteria in reinforcement learning. In Proceedings of the
AAAI Fall Symposium on Learning Complex Behaviors in Adaptive Intelligent Systems,
1996.

[36] Colin McMillen. Capture the flag simulator source code. http://colinm.org/thesis,
2009.

[37] Colin McMillen, Paul Rybski, and Manuela Veloso. Levels of multi-robot coordina-
tion for dynamic environments. In Multi-Robot Systems: From Swarms to Intelligent
Automata, Volume III, pages 53–64. Kluwer Academic Publishers, 2005.

[38] Colin McMillen and Manuela Veloso. Distributed, play-based coordination for robot
teams in dynamic environments. In RoboCup 2006: Robot Soccer World Cup X, June
2006.

[39] Colin McMillen and Manuela Veloso. Distributed, play-based role assignment for robot
teams in dynamic environments. In Proceedings of Distributed Autonomous Robotic
Systems, July 2006.

[40] C. Miller, H. Funk, P. Wu, R. Goldman, J. Meisner, and M. Chapman. The playbook
approach to adaptive automation. In Proc. Human Factors and Ergonomics Society,
2005.

[41] Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning, 13:103–130, 1993.

[42] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender. Complex-
ity of finite-horizon Markov decision process problems. Journal of the ACM, 47(4):681–
720, 2000.

194

http://colinm.org/thesis

[43] Lynne E. Parker and Brad Emmons. Cooperative multi-robot observation of multi-
ple moving targets. In Proceedings of 1997 International Conference on Robotics and
Automation, 1997.

[44] Ronald E. Parr. Hierarchical control and learning for Markov decision processes. PhD
thesis, UNIVERSITY of CALIFORNIA, 1998.

[45] S. D. Patek and D. P. Bertsekas. Play selection in American football: A case study
in neuro-dynamic programming. Advances in Computational and Stochastic Optimiza-
tion, Logic Programming, and Heuristic Search: Interfaces in Computer Science and
Operations Research, page 189, 1998.

[46] R. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, 1994.

[47] D.V. Pynadath and M. Tambe. The communicative Multiagent Team Decision Problem:
Analyzing teamwork theories and models. Journal of Artificial Intelligence Research,
16:389–423, 2002.

[48] M.J. Quinlan and S.K. Chalup. Impact of tactical variations in the RoboCup four-legged
league. In Proceedings of the 2006 International Symposium on Practical Cognitive
Agents and Robots, pages 27–38. ACM New York, NY, USA, 2006.

[49] M.J. Quinlan, N. Henderson, R.H. Middleton, S.P. Nicklin, R. Fisher, F. Knorn, S.K.
Chalup, and R. King. The 2006 NUbots team report, 2006.

[50] M.J. Quinlan, O. Obst, and S.K. Chalup. Towards autonomous strategy decisions in
the RoboCup Four-Legged League. In Proceedings of the Seventh IJCAI International
Workshop on Nonmontonic Reasoning, Action and Change.

[51] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[52] RoboCup Technical Committee. Sony four legged robot football league rule book.
Available online at: http://www.tzi.de/spl/pub/Website/History/Rules2004.pdf,
2004.

[53] RoboCup Technical Committee. Sony four legged robot football league rule book. Avail-
able online at: http://www.tzi.de/4legged/pub/Website/Downloads/Rules2005.

pdf, 2005.

[54] RoboCup Technical Committee. RoboCup four-legged league rule book. Available online
at: http://www.tzi.de/4legged/pub/Website/Downloads/Rules2006.pdf, 2006.

195

http://www.tzi.de/spl/pub/Website/History/Rules2004.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2005.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2005.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2006.pdf

[55] RoboCup Technical Committee. RoboCup four-legged league rule book. Available online
at: http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf, 2007.

[56] RoboCup Technical Committee. RoboCup four-legged league rule book. Available online
at: http://www.tzi.de/4legged/pub/Website/Downloads/Rules2008.pdf, 2008.

[57] David Romer. It’s Fourth Down and what Does the Bellman Equation Say?: A Dynamic-
programming Analysis of Football Strategy. National Bureau of Economic Research,
2002.

[58] Maayan Roth, Douglas Vail, and Manuela Veloso. A real-time world model for multi-
robot teams with high-latency communication. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, volume 3, pages 2494–2499,
October 2003.

[59] H. Sackrowitz. Refining the point(s)-after-touchdown decision. Chance, 13(3):29–34,
2000.

[60] Sascha A. Stoeter, Paul E. Rybski, Kristen N. Stubbs, Colin P. McMillen, Maria Gini,
Dean F. Hougen, and Nikolaos Papanikolopoulos. A robot team for surveillance tasks:
Design and architecture. Robotics and Autonomous Systems, 40(2–3):173–183, August
2002.

[61] Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis, Carnegie Mellon
University, December 1998.

[62] Alexander L. Strehl, Lihong Li, and Michael L. Littman. Incremental model-based
learners with formal learning-time guarantees. In Proceedings of Uncertainty in Artificial
Intelligence, 2006.

[63] Alexander L. Strehl and Michael L. Littman. An empirical evaluation of interval esti-
mation for Markov decision processes. In IEEE International Conference on Tools with
Artificial Intelligence, 2004.

[64] A.W. Stroupe and T. Balch. Value-based observation with robot teams (VBORT)
using probabilistic techniques. In Proceedings of International Conference on Intelligent
Robots and Systems 2003, 2003.

[65] G.S. Sukhatme, A. Dhariwal, B. Zhang, C. Oberg, B. Stauffer, and D.A. Caron. Design
and development of a wireless robotic networked aquatic microbial observing system.
Environmental Engineering Science, 24(2):205–215, 2007.

196

http://www.tzi.de/4legged/pub/Website/Downloads/Rules2007.pdf
http://www.tzi.de/4legged/pub/Website/Downloads/Rules2008.pdf

[66] G. Sukthankar and K. Sycara. Robust recognition of physical team behaviors using
spatio-temporal models. In Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pages 638–645. ACM New York, NY, USA,
2006.

[67] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International Con-
ference on Machine Learning, pages 216–224, 1990.

[68] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press, 1998.

[69] R.S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1):181–211,
1999.

[70] Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research,
7:83–124, 1997.

[71] Sylvie Thiebaux, Charles Gretton, John Slaney, David Price, and Froduald Kabanza.
Decision-theoretic planning with non-Markovian rewards. Journal of Artificial Intelli-
gence Research, 2006.

[72] Sylvie Thiebaux, Froduald Kabanza, and John Slaney. Anytime state-based solution
methods for decision processes with non-Markovian rewards. In Proceedings of Uncer-
tainty in Artificial Intelligence, 2002.

[73] D.L. Vail, M.M. Veloso, and J.D. Lafferty. Conditional random fields for activity recog-
nition. In Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems. ACM New York, NY, USA, 2007.

[74] Douglas Vail and Manuela Veloso. Dynamic multi-robot coordination. In Multi-Robot
Systems: From Swarms to Intelligent Automata, Volume II, pages 87–100. Kluwer Aca-
demic Publishers, 2003.

[75] Manuela Veloso, Paul E. Rybski, Sonia Chernova, Colin McMillen, Juan Fasola, Fe-
lix von Hundelshausen, Douglas Vail, Alex Trevor, Sabine Hauert, and Raquel Ros
Espinoza. CMDash’05: Team report. Available online at http://www.cs.cmu.edu/

~robosoccer/legged/reports/CMDash05-report.pdf, 2005.

[76] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. CAPTCHA:
Using hard AI problems for security. In Eurocrypt 2003, 2003.

197

http://www.cs.cmu.edu/~robosoccer/legged/reports/CMDash05-report.pdf
http://www.cs.cmu.edu/~robosoccer/legged/reports/CMDash05-report.pdf

[77] Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel Blum.
Manual character recognition using online security measures: An example of crowd
computing. Science, pages 1465–1468, September 12, 2008.

[78] Liad Wagman and Vincent Conitzer. Strategic betting for competitive agents. In AA-
MAS ’08: Proceedings of the 7th International Joint Conference on Autonomous agents
and Multiagent Systems, pages 847–854, Richland, SC, 2008. International Foundation
for Autonomous Agents and Multiagent Systems.

[79] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3–4),
1992.

[80] Thilo Weigel, Willi Auerbach, Markus Dietl, Burkhard Dümler, Jens-Steffen Gutmann,
Kornel Marko, Klaus Müller, Bernhard Nebel, Boris Szerbakowski, and Maximilian
Thiel. CS Freiburg: Doing the right thing in a group. Lecture Notes in Computer
Science, 2019:52–63, 2001.

[81] M. Wiering and J. Schmidhuber. Efficient model-based exploration. In Proceedings of
the Fifth International Conference on Simulation of Adaptive Behavior (SAB’98), pages
223–228, 1998.

[82] P. Zigoris, J. Siu, O. Wang, and A. Hayes. Balancing automated behavior and hu-
man control in multi-agent systems: a case study in RoboFlag. In Proceedings of the
American Control Conference, pages 667–671, June 2003.

198

	Introduction
	Approach
	Domains
	Contributions
	Reader's Guide to the Thesis

	Domains
	Robot Soccer
	Play-Based Teamwork in Robot Soccer

	Capture the Flag
	Capture the Flag Domain Specification
	Roles
	Plays

	reCAPTCHA
	Summary

	Thresholded-Rewards MDPs
	Definition of a Thresholded-Rewards MDP
	TRMDP Example
	TRMDP Conversion Algorithm
	TRMDP Solution Algorithm
	Results
	Summary

	Heuristics for TRMDPs
	The Uniform-k Heuristic
	The Lazy-k Heuristic
	The Logarithmic-k-m Heuristic
	Results
	Summary

	TRMDPs with Arbitrary Reward Distributions
	Definitions
	TRSMDP Optimal Solution Algorithm
	TRSMDPs Applied to the CTF Domain
	Finding Good CTF Plays
	CTF Time-To-Score Distributions
	CTF Optimal Policies
	Experimental Results

	TRSMDPs Applied to the Robot Soccer Domain
	Experimental Domain
	Robot Soccer Time-To-Score Distributions
	Robot Soccer Optimal Policy

	Comparison Between MDP and SMDP Approaches
	Threshold-Plus-Linear Objective Function
	Summary

	TRMDPs with Unknown Opponents
	Incidental Behavior Recognition in Robot Soccer
	Approach
	Experimental Setup
	Experimental Results
	Summary

	Acting in Response to an Unknown Opponent
	Static Opponent
	Dynamic Opponent

	Summary

	TRMDPs with Unknown Rewards
	reCAPTCHA Domain Model
	Background
	Sampling-Based Control Policy
	Results
	Summary

	Related Work
	Markov Decision Processes
	Decision Problems with Alternative Objective Functions
	Multi-Robot Teamwork
	Teamwork in Robot Soccer
	Strategic Decisions in American Football
	Summary

	Conclusion
	Contributions
	Future Directions
	Concluding Remarks

	Communication and Play-Based Role Assignment in the RoboCup Four-Legged League
	Communication Strategies
	Ball Messages
	Status Messages & Intentions
	Periodic Messages

	Distributed Play-Based Role Assignment
	Plays
	Play Selector
	Role Allocator
	Roles

	Experimental Results
	Conclusion

	Capture the Flag Experiment Data
	11-Play Preliminary Experiment Data
	Time-To-Score Distributions
	Optimal Policies

