
December 26, 2008 14:2 WSPC/191-IJHR 00147

International Journal of Humanoid Robotics
Vol. 5, No. 3 (2008) 457–480
c© World Scientific Publishing Company

A TEAM OF HUMANOID GAME COMMENTATORS

MANUELA VELOSO, NICHOLAS ARMSTRONG-CREWS,
SONIA CHERNOVA, ELISABETH CRAWFORD,

COLIN MCMILLEN, MAAYAN ROTH,
DOUGLAS VAIL and STEFAN ZICKLER

School of Computer Science,
Carnegie Mellon University,
Pittsburgh, PA 15213, USA

Received 30 July 2007
Accepted 30 January 2008

We present a team of two humanoid robot commentators for AIBO robot soccer games.
The two humanoids stand by the side lines of the playing field, autonomously observe

the game, wirelessly listen to a “game controller” computer, recognize events, and select
announcing actions that may require coordination with each other. Given the large degree
of uncertainty and dynamics of the robot soccer games, we further introduce a “Puppet
Master” control that allows humans to intervene, prompting the robots to commentate
an event if previously undefined or undetected. The robots recognize events based on
input from these three sources, namely own and shared vision, game controller, and
occasional Puppet Master. We present the two-humanoid behavioral architecture and
the vision-based event recognition, including a SIFT-based vision processing algorithm
that allows for the detection of multiple similar objects, such as the identical shaped
robot players. We introduce the commentating algorithm that probabilistically selects a
commentating action from a set of weighted actions corresponding to a detected event.
The probabilistic selection uses the game history and updates the action weights to effec-
tively avoid repetition of comments to enable entertainment. Our work, corresponding
to a fully implemented system, CMCast, with two QRIO robots, contributes a team of
two humanoids fully executing a challenging observation, modeling, coordination, and
reporting task.

Keywords: Cooperating humanoids; controlled autonomy; event recognition; multi-object
visual detection; history-based probabilistic action selection.

1. Introduction

Research in robot soccer within RoboCup, has rapidly progressed since its begin-
nings in the mid-1990s.1 The robots successfully compete as teams, perceiving a
challenging dynamic environment, making decisions, cooperating as a team, and
acting to achieve concrete objectives. Although the robots play the game, humans
perform all the other functions associated with the game, including being commen-
tators and referees. One challenging question is whether we can also develop robot

457



December 26, 2008 14:2 WSPC/191-IJHR 00147

458 M. Veloso et al.

commentators and referees for the game of robot soccer. In this article, we present
how we address the commentator task with a team of two humanoid robots, namely
two Sony QRIO robots.4,a Our work enables future extensions to robot referees and
even coaches.

We developed the first humanoid robot commentators for the specific game of the
RoboCup Four-Legged Robot League, in which two teams of four Sony AIBO robots
compete. There are several previous efforts that demonstrated soccer commenta-
tors for either real soccer images,5 or for simulation soccer,6 or for the small-size
RoboCup soccer game.7,8 Except for one of these efforts,7 which used a humanoid
head, the commentators were not done with actual mobile humanoid robots, show-
ing that the core task of commentating a game may not necessarily “need” to be
performed by a humanoid robot.

We choose the commentator task for our humanoids for two main reasons.
Firstly, we view the commentator task with an additional goal of interaction with
the audience, which fits well with the use of humanoids. The interaction that we
have developed so far can be viewed as a one-way interaction with the audience: the
robots act to announce and entertain, but the robots do not process visual or sound
information from the audience. Creating full two-way interactive commentators is
one step for future work. Secondly, as it is hard to find tasks for full humanoids
to autonomously perform, we find that this commentator domain provides a con-
crete challenge for the humanoid robots, requiring them to completely and robustly
integrate their perception, cognition, and body motion.

An additional interesting aspect of our work, which further distinguishes it from
the few previous robot commentator efforts, is our use of two humanoid robot
commentators. We pursue research on multi-robot systems, and the fact that the
playing field is larger than the range of the vision of a single QRIO offers a great
opportunity for us to investigate a team of two humanoid commentator robots.
Finally, although our work is developed within the specific commentator task, we
aim to contribute a general architecture and algorithms potentially capable of being
used in other similar “observation-reporting-motion” multi-robot tasks.

Our two robot humanoids act as a team of commentators, CMCast standing on
the side line of the RoboCup AIBO playing field, following the game, and announc-
ing game events. Figure 1 shows the setup.

Each humanoid robot commentator has a stereo vision camera, on-board com-
puting for processing its perception, cognition, and motion, multiple actuators, and
wireless communication. The robots observe the AIBO game. They assess the state
of the world from three different sources: (i) their own vision, (ii) a “game controller”
that transmits the calls of the human referee, such as goals, fouls, and out-of-bounds
balls, and (iii) a “Puppet Master,” which we introduce as a control interface that
allows a human to prompt the commentator to announce any event that the robots

aThe QRIO robots were developed by Sony, who has since ceased new developments on the QRIO
robot platform.



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 459

Fig. 1. Two QRIO robot commentators for an AIBO robot soccer game.

may not have detected through their vision, or that may not have been called by
the referee.

We organize the article on our team of humanoid game commentators as follows.
Section 2 first presents the overall behavior architecture, introducing the connec-
tions between the reasoning and the multiple sources of input and output. It then
introduces the complete behavior algorithm that allows the robots to robustly iden-
tify and call events in the game. Section 3 presents the vision processing to enable
event recognition. Game objects are processed based on color. A SIFT-based vision
algorithm enables visual recognition of multiple objects, such as the AIBO soc-
cer players. We did not include this autonomous multi-object detection feature
in our demonstrated CMCast commentator system at RoboCup 2006, mainly due
to lack of development time. However, the algorithm has been successfully demon-
strated using real video footage of RoboCup games. The robots in the demonstrated
CMCast announced the game based on visual tracking of the colored ball. Section 4
then presents our event recognition from wireless communications, namely the refer-
ees’ game controller, and the “Puppet Master” control interface. Section 5 presents
the library of announcements, which allows multiple speech and gesture commands
to be generated for similar events for entertainment. It further explains our algo-
rithm for selecting announcements as a function of the game history. Finally, Sec. 6
draws conclusions on the work presented.



December 26, 2008 14:2 WSPC/191-IJHR 00147

460 M. Veloso et al.

2. Architecture

At a high level of abstraction, the commentator task consists of a loop in which
the commentators (1) observe the game through various sensory and wireless input
sources, (2) filter those inputs to recognize salient events, and (3) provide event
announcements and relevant commentary by means of speech and gestures. Our
behavior architecture captures the interactions between these three underlying main
concepts: observations, events, and actions.

2.1. Overall behavior architecture

Figure 2 shows a high level overview of the overall architecture of our system,
CMCast, which consists of the two robots, a centralized control module, the Direc-
tor, and two external input sources, i.e. the Game Controller and the Puppet
Master.

The commentator task sets a clear requirement for immediate responses to
events. To ensure this capability, we introduce a centralized decision module, the
Director, is responsible for processing external input and coordinating the behavior
of the two robots. Centralized control enables fast and efficient decisions, with-
out the need for decision-making negotiation strategies over the wireless network.
The Director chooses the robots’ actions, which are executed by their onboard
processors.

Input to the Director comes from three classes of sources: the Game Controller,
the Puppet Master, and the two robots. The Game Controller is the referee interface
used within the RoboCup four-legged robot league to communicate referee decisions
to the robots. All calls within a game, such as kickoff, ball out, and penalties, are
made verbally by a human referee who observes the game. The calls are entered
by another human game official into the Game Controller, which in turn wirelessly
communicates this information to the AIBO robots. The robot players then act
autonomously in response to the called game situations.

Fig. 2. The CMCast overall architecture.



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 461

Given that this Game Controller exists basically to transfer human referee com-
mands to the robot players, we introduce it also as an input source of information to
the Director. The Game Controller provides valuable and precise information about
the current state of the game, which cannot be always determined through other
means (e.g., the robot commentators cannot determine which robot was penalized
using vision because all AIBO robots on a team have the same visual appearances).
The Game Controller enables the commentators to report the state of the game
and to explain the various rules of the game, such as penalties, as they occur.

Not all interesting events have human referee calls associated with them. There-
fore not all events, on which the robots need to commentate, are available from
the Game Controller. For example, when a particularly good shot is made by an
attacker, or a goalie robot makes a spectacular save, the commentators should
respond to these events, even if these events do not result in a referee call. We
resort to recognizing some of these events through the robots’ on-board vision, as
we describe in Sec. 3. This vision-based event information is reported by the robots
to the Director module.

The combination of the Game Controller and the robots’ own vision to detect a
series of predefined event classes inevitably still not able to detect “all” interesting
events. It may be that the robot behavior is difficult to recognize through vision
processing, that the event occurs out of view of the robots’ cameras, or that an
exceptional circumstance occurs that was not included in the predefined possible
set of events. We introduce another input to the Director module, the “Puppet
Master,” which provides a human commentator assistant with a means to manually
supplement event data. Section 4 discusses further details of the Game Controller
and Puppet Master.

Given the three types of sources of input — Puppet Master, Game Controller,
and Robots (see Fig. 2) — the Director collects and maintains a Game History,
as a set of game statistics that are relevant for later announcements. For example,
the Director keeps a count of penalties for each robot so that it can announce
when a particular robot has suffered an additional penalty. In each iteration of
the algorithm, the Director evaluates its input, detects significant events that may
have occurred, and triggers the appropriate commentating responses for each of
the robots. The resulting output can vary between a single utterance or motion,
to a full dialog between the two robots. Section 5 provides further details about
the game history and also describes the algorithm for selecting the appropriate
response to a detected event. Commands for physical motions, such as gestures,
are communicated to each robot from the Director via the wireless network. Each
robot executes its specified commands using on-board behavior architecture, which
we now describe.

2.2. On-board single robot behavior architecture

Figure 3 shows the QRIO robot on-board behavior architecture. Processing begins
with the image data acquired from the robot’s camera, from which information



December 26, 2008 14:2 WSPC/191-IJHR 00147

462 M. Veloso et al.

Fig. 3. The CMCast robot on-board behavior architecture.

about objects in the robot’s environment is extracted by the Vision module.
The position and orientation of the robot is calculated by the Localization mod-
ule, based on the observed locations of fixed localization markers (colored beacons
placed around the edges of the AIBO playing field that act as landmarks), as well
as the robot’s odometry model. The World Model module uses the vision and local-
ization data to track the global positions of other objects detected by the robot in
the environment, such as the ball. The global position of the ball is communicated
by the robot to the Director, enabling both commentators to maintain up-to-date
information even if one robot may not have the ball in its field of observation.
Finally, the behavior module uses the world model information to execute primitive
behaviors as instructed by the Director.

The set of primitive behaviors includes motion gesture commands, ball tracking
behaviors, and ball search. All of these behaviors require low latency for smooth
execution, and are therefore best executed on-board the robots.

3. Vision Processing for Event Recognition

Important objects in the RoboCup environment are color-coded: the ball is colored
orange, the field is green, and the two goals are colored blue and yellow. There
are also color-coded markers intended for robot localization; each of these markers
consists of two colored bands on a white column. To detect objects in the RoboCup
environment, the robots perform color segmentation on the camera images using
the CMVision9 image library, and then run a series of object detectors over the
segmented images to determine which objects are present.

CMVision includes effective color-based object detectors for the ball, goals, and
localization markers. Below, we discuss the purpose of vision on the robot, including
ball detection as performed in CMCast. We also present a SIFT-based algorithm
that enables the needed detection of multiple color-equivalent robots. The algorithm
was not part of the demonstrated CMCast, but it has been successfully applied to
RoboCup video footage.



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 463

3.1. Color-based object detection for CMCast

We use vision to provide low latency information to the on-board behaviors so
the robot can quickly and realistically respond to events as they unfold. In the
commentator domain, the QRIOs mainly use low latency information from vision for
effective ball tracking. The robots use ball position estimates from the vision module
to servo their heads and bodies to make it clear to the audience that they are paying
attention to the current state of the soccer game. In addition to tracking the ball, the
robots use information from vision to detect the positions of localization beacons.
Beacon information allows the robots to compute their global positions on the field
and therefore translate the positions of other objects, such as the ball, into global
coordinates, so that those positions can be shared between robots. Furthermore,
the robots use vision of the goals to focus on the appropriate goal in response to
events, such as points being scored.

We use vision to detect events for the robots to incorporate into their com-
mentary. Currently, two types of events are detected: the presence of the ball in a
particular region of the field, and times when the ball has been kicked by a robot.
Each robot uses its estimate of the ball position, as well as its own position, to
detect when the ball enters particular regions of the field, such as the area around
a goal. The robots also monitor the ball to determine when it is kicked. Each robot
maintains a running history of ball positions. They compare movement vectors
between the ball positions and compute a heuristic confidence metric, which gauges
whether or not the ball has been kicked, based on the length of the vectors as well
as the co-linearity of the vectors. In practice, a history length of six ball sightings,
or one half seconds of data, allows the robots to accurately detect when the ball is
kicked.

Object detection is performed after color segmentation. Figure 4(a) shows an
example of a color image as captured by a robot’s camera. Figure 4(b) shows the

(a) A color image from QRIO’s camera (b) The image after our color segmentation

Fig. 4. Color-based image processing for recognition of relevant game objects.



December 26, 2008 14:2 WSPC/191-IJHR 00147

464 M. Veloso et al.

results of color segmentation on the same image, illustrating successful segmentation
of the orange ball from the player robot and the field. A localization marker is also
segmented and can be seen at the edge of the field.

The result of color segmentation is a set of colored regions. We run a series
of object detectors over this set of regions. Each object detector selects candidate
regions that are likely to belong to that object. For example, the ball detector
considers all orange regions above a size threshold; the localization marker detector
looks for an appropriate pair of colored regions next to each other (e.g., a pink
region directly above a blue region). These candidate regions are scored according
to a series of heuristic models. For instance, the models for the ball expect the
ball region to have a roughly square bounding box and to be near green regions
(corresponding to the field). Color regions possessing most of these features therefore
score highly by the ball-detection model. The output of the ball detector is the largest
orange region with an acceptably high score. This score is also a heuristic confidence
estimate indicating how likely it is that the object is truly present. The distance to
each object is calculated by intersecting rays through the closest pixels of the object
onto the ground plane. The relative position of each object can then be found via
the robot’s kinematics; this relative position is then translated into a shared global
coordinate frame by using the results of the Localization module.

3.2. SIFT-based detection of player robots

Our actual demonstrated humanoid commentators at RoboCup 2006 relied on visual
perception of the ball and of the goals. However, we want to provide the humanoids
with the additional capability of autonomously processing their own vision to eval-
uate the state of a more complex game, in particular by determining the positions
of the players on the field. We have successfully researched on such an algorithm
for which is a challenging task as the robots appear all the same. We also show
experimental results obtained in the RoboCup domain.

The detection and position identification of multiple non-rigid objects, such
as walking four-legged robots, is a very different challenge from the problem of
detecting single fixed-shape objects, such as the ball in a robot soccer game. While
the ball is a moving target that gets frequently occluded, distorting its visible shape,
it is still identifiable through its unique orange color on the field. The player robots
however, are basically all of the same color and are very likely to share colors with
the field markings and other objects in the background. In addition to this color
ambiguity, we are interested in separating the multiple robots. This separation is
not possible to reliably achieve using color segmentation, as falsely identify a cluster
of robots as a single object due to an incorrect merging of neighboring colored
regions.

As we cannot rely on color for the recognition and separation of the multiple
robots, we introduce a robot detection algorithm to make use of visually interest-
ing textural features of the object to be recognized. However, even when relying



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 465

on textural features rather than color, we still have to overcome the challenge that
highly non-rigid player robots cannot be easily represented by a single global feature
descriptor because a robot’s overall shape configuration can change fundamentally
between observations. Our approach aims to overcome this problem by representing
objects using purely local features without enforcing a strict geometric relationship
between them.

For the effective separation of the multiple robots, we introduce a probabilistic
voting scheme where each detected local feature produces its own hypothesis of
an object’s most likely location. Clustering then enables the detection of multiple
instances of the robot in the image. Our algorithm provides detection of multiple
robots in a scene while being robust enough to handle object deformation, object
motion, and perspective changes which are inevitable in our commentator task.

Our algorithm’s feature detection and description is based on PCA-SIFT.10

A standard SIFT vector is a 128-dimensional local feature descriptor of interest-
ing keypoints in the image.11 SIFT descriptors are invariant to scale and rota-
tion and relatively robust to perspective changes, making them ideal for object
recognition tasks. SIFT has been successfully applied to robust object detection
in still images11 for a variety of applications, such as metric robot localization12

and medical imaging.13 A comparative study shows that SIFT descriptors are one
of the best currently available descriptors.14 PCA-SIFT10 is an extension to SIFT
that reduces SIFT’s high dimensionality by applying principal component analy-
sis (PCA). PCA-SIFT is hence better suited for nearest neighbor lookups against
a training dataset. We have used a 20-dimensional PCA-SIFT for the detection
of multiple static objects in continuous video footage, a task that is commonly
encountered in many robotic domains.15 We present an extension of this technique
for domains containing multiple non-rigid objects.16

In order to detect the multiple walking similar robots, our approach consists of
two major components: the training stage to learn the representation of a single
player robot by collecting its PCA-SIFT features; and, the recognition stage to
detect and localize player robots in real-time video footage.15 We focus on presenting
the recognition.

3.2.1. Centroid voting space for multi-object recognition

Table 1 shows the detection and position identification stage allowing for the recog-
nition of multiple similar objects.

The detection threshold θ determines the matches with the training data, as the
Euclidean distance in PCA-SIFT space between a feature and its nearest neighbor
from the training dataset. Choosing a good value of θ is critical. A smaller value of
θ will deliver fewer but more precise matches, while a larger value of θ will deliver
more matches while increasing the likelihood of false positives.

We introduce a voting scheme to determine the position of each object (e.g.
player robot) in the image. Any matched feature kij votes for where it predicts the



December 26, 2008 14:2 WSPC/191-IJHR 00147

466 M. Veloso et al.

Table 1. Detection and position identification phase of the SIFT-based multi-robot detection.

Let the “voting space” be a set S containing votes of hypothesized 2D robot positions. Let S = ∅
initially.
For each frame vi of our incoming continuous video V :

(1) Generate the set of all PCA-SIFT keypoints Ki containing keypoints kij ∈ Ki.

(2) For each keypoint kij of Ki:

(a) Perform a nearest neighbor lookup with all the elements tl of the training set T . An
observed PCA-SIFT feature kij is considered a match if

min
tl∈T

D(kij , tl) ≤ θ

where D is the Euclidean distance, and θ is a given detection threshold.
(b) For any matching kij , calculate the hypothesized position of the object’s center pl, by

scaling and rotating the previously recorded relative position locrell of tl to match the
scale and orientation of kij . Add the hypothesized position pl as a “vote” to the voting
space S.

(3) Run a clustering algorithm on the voting space S using a clustering threshold δ and enforcing
a minimum cluster size of s votes. Then calculate the center of mass for each cluster, as the
resulting object position in the image.

center of its parental object to be. The algorithm retrieves the nearest neighbor
tl and its relative position towards the annotated object’s center from the training
set T . The algorithm then rotates and scales tl’s relative location vector to match the
scale and orientation of the newly detected keypoint kij . When adding this vector
to the absolute location of kij , a hypothesis of the object’s center is generated.
This hypothesis is counted as a vote for the object’s center in the two-dimensional
voting space. This voting scheme allows for the identification of multiple hypotheses
for the multiple object centers.

The voting scheme is an heuristic approximation, as there is no clear guarantee
that the same feature cannot occur at a different relative position towards the
object’s center than in the training data. This is especially the case because the
object is non-rigid. However, we can optimistically assume that many of the votes
do in fact approximately match the object’s center and that our voting scheme takes
care of possible outliers.

An interesting side-effect of the voting space approach is that it automatically
solves the problem of occlusion. Even when an object is half occluded or moving off
the visible screen, the algorithm still correctly hypothesizes the object’s center.

When applied to multiple objects in the image, the algorithm finds multiple
density peaks of votes in our voting space, each representing a hypothesis for a
player robot’s location. Thus, after populating the voting space, a clustering algo-
rithm locates these peaks. We use the Mean-Shift18 clustering algorithm due to its
high performance even under large sets of votes. As other clustering techniques,
Mean-Shift requires a clustering threshold δ, also known as the “bandwidth.” The
crucial purpose of δ is to determine whether a particular vote is close enough in
feature space to be considered a part of an already existing cluster of votes, or



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 467

whether it is too far and should thus be treated as the initial vote of a new cluster.
Choosing a smaller value of δ makes the clustering of votes less likely, and can
lead to unnecessary multiple detections of the same object. Choosing a larger value
of δ increases the likelihood of clustering votes and increases the risk of wrongly
grouping multiple object instances into a single detection point. Finally, clusters
are rejected, if they contain less votes than a minimum cluster size threshold s.
The center of mass is computed for each remaining cluster and returned as the final
detected position.

3.2.2. Multi-robot detection results

The domain of our commentating task certainly constitutes an interesting testing
ground from a vision perspective. The robots used are highly dynamic and non-rigid,
featuring 20 degrees of freedom that allow almost any conceivable actuation of legs,
feet, neck, and head. Participating RoboCup teams typically create their own unique
robotic motions which range from basic walking patterns to rather complex and
unorthodox bodily expressions. Video scenes are normally populated with several
robots that can be depicted in various shape configurations, perspectives, and scales.
Other frequent vision constraints are robot occlusion, highly cluttered backgrounds
(for instance, by a human audience), and motion blurring. We applied our approach
on random training and testing data from this domain.

Figure 5 shows some interesting detection results using real RoboCup footage.
Frames (a)–(c) show some very successful examples where the algorithm is able

to correctly locate the robots even when being partially occluded, such as the goalie
in frames (a) and (b). Frame (c) further shows how the algorithm is able to cor-
rectly recognize robots of different scale and orientation, even when clustered closely
together. Finally, frame (d) shows an example where two robots in the front are

(a) (b) (c) (d)

Fig. 5. A selection of interesting frames from the testing video. The top row shows the input
frames. The bottom row shows the centroid voting space after running PCA-SIFT on the input
frames. Each vote is annotated by a small black dot. The result of clustering and centroid-finding
on this voting space is marked by larger black circles.



December 26, 2008 14:2 WSPC/191-IJHR 00147

468 M. Veloso et al.

performing a rare “celebration” move. Detection fails for these two robots, because
none of their visible local features were ever observed during training. Nevertheless,
the other robots in the front of this scene are successfully detected.

Good computational performance is a significant requirement of our approach
as it is intended to be used in a real-time commentator task. We have performed a
detailed quantitative analysis of our algorithm that shows its effectiveness.16

4. Wireless Information Sources

Wireless networking allows each of the components of our architecture, including
the QRIO robots, to communicate with each other.

4.1. Game Controller

The referees of the RoboCup four-legged robot league use a program Game Con-
troller, which wirelessly sends referee calls and similar information to the players.
Figure 6 shows the Game Controller interface.

We develop our commentators to also listen to this data source, which allows
them to detect a rich class of events that would be difficult or impossible to detect
through vision. Specifically, the Game Controller provides the following information
to the humanoid commentators:

• Game state: The current score, whether the game is in the first or second half,
the time remaining in the half of the game, and the team to kick off.

• All the penalties that can be called against the robots: Ball holding, illegal
defender, goalie pushing, player pushing, leaving field, pick-up request, illegal
defense, obstruction, and damage. The penalty data tells which robot(s) were
penalized for each foul.

Fig. 6. The Game Controller interface, as developed in the RoboCup Four-Legged Robot League.



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 469

• Goal scored.
• “Ball out” calls made by the referees.
• Time-outs called by either team.

The Game Controller provides valuable notification of many events that the
robots may otherwise have been unable to recognize autonomously.

4.2. Puppet Master

There are many significant number of interesting events that are not detectable
either with the on-board vision or with the Game Controller input. For instance,
the AIBOs sometimes crash due to empty batteries. It is difficult for the commen-
tators to visually recognize a crashed robot as opposed to a stopped robot. We have
developed the off-board Puppet Master controller to allow a human operator to
artificially insert specific types of events, such as robot crashes, into the commen-
tators’ game history. Figure 7 shows a screenshot of the Puppet Master interface,
as we developed it.

Fig. 7. Screenshot of the Puppet Master — an interface for human guidance.



December 26, 2008 14:2 WSPC/191-IJHR 00147

470 M. Veloso et al.

The Puppet Master consists of three main functional parts, namely:

• Event guidance — One of the main functions of the Puppet Master is to pro-
vide the robot commentators with additional event information. The top of the
interface in Fig. 7 shows the event choices available to the user. The events fall
into three categories:

— Game events are predefined announcements associated with game situations.
These events include sequences of announcements made at various stages of
the match (e.g. before the game, at half time), exclamations relating to inter-
esting occurrences on the field (e.g. “wow!”, “oops!”) and comments on com-
mon game occurrences (e.g. robot crashed, nice save).

— Filler events are used to fill in the silence when nothing particularly inter-
esting is happening in the game. When the filler event is invoked in the
Puppet Master, the robots comment on something not directly related to
the current game state, such as further explanation of the game rules, the
abilities and hardware of the AIBO robots, and team-specific details such as
their team captain, areas of research interest, and results from past RoboCup
competitions.

— Manually selected speech and motion events enable the user to specify custom
speech and gestures which are not part of the predefined events (shown under
the “Say”, “Motion” empty fields at the top of the interface). The human can
hence enable a robot to respond to unpredicted and highly unusual events.
Within the demonstrated CMCast at the RoboCup 2006 event, this capability
was not required during commentating of the multiple games.

• Perceptual guidance — To avoid interfering with the human referees moving
around the field, the CMCast robot commentators remain in fixed positions on the
side line of the field (see Fig. 1). Commentator movement is restricted to rotating
in place in order to face the area of interest. As a result of these limitations
on movement, the commentators are not able to track the ball continuously due
to occlusions in distant areas of the field. Additionally, the ball position often
changes suddenly when the ball is manually positioned by the human referee
following a ball-out event.

The perceptual guidance feature of the Puppet Master enables the user to
provide the commentators with the ball position. The input is given at a high-
level of granularity, as we discretize the field into 25 cells, as shown in Fig. 7,
with the two blue (B) and yellow (Y) goals. Based on this information, the robot
rotates to face the designated area and continues tracking the ball position using
the on-board vision.

• Motion guidance — Finally, the announcing motions may cause the robots to
shift from their desired positions next to the sideline. The Puppet Master enables
each robot to be remotely repositioned using the arrow interface located on the
bottom of the screen. Remote positioning through the Puppet Master is used
instead of automatic localization in order to ensure that noise and odometry



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 471

errors do not cause the robot to step into the field and interfere with normal
game play.

In summary, the Puppet Master provides a sliding autonomy interface for
integrating possible human guidance within the robot autonomous control. As
autonomous detection of game events improves, the need for this level of control
decreases.

4.3. Commentators

The final source for event detection are the commentator robots themselves. As
described in the previous section, each robot uses its on-board vision to track the
location of the ball. Based on this information, each robot provides the Director
with two types of information:

• Ball location on the field.
• Kick event description (direction and velocity).

In addition to information obtained from vision, the robots report back to
the Director on the execution of their motion commands. This practice is neces-
sary for tighter synchronization, since motion commands can take up to several
seconds to complete. The Director then synchronizes the two robots’ motions, as
well as each individual robot’s gestures with its speech. In the implementation of
CMCast 10b, speech is generated by an off-board text-to-speech component19 and
sent to external loudspeakers. The external sound generation and amplification is
needed so that the robots’ speech can be easily heard in the noisy stadium environ-
ment. However, the robots’ on-board speech synthesis software can be easily used
instead.

5. Commentating Action Selection: Speech and Gesture

The purpose of the QRIO commentator team is to inform and entertain. As such,
the commentator algorithm is tasked with intelligently processing vision and other
inputs in order to generate a timely and relevant commentary that coordinates the
two robots’ speech and gestures. The commentary is largely event-driven, but also
remarks on the development of the game over time. In this final section, we provide
details of the commentator algorithm, located centrally in the Director module,
which processes its inputs (robot vision, Game Controller events, and Puppet Mas-
ter directives) to generate commentary (speech and gestures).

Formally, the task of the commentator algorithm is to map observations to
actions. We break up this task into three subtasks: (1) keep a game history of
sufficient statistics of the raw observations; (2) detect relevant events from the
history (in many cases, a relevant event is immediate and only a function of the
current observations); and (3) select an action to commentate the event. Therefore,



December 26, 2008 14:2 WSPC/191-IJHR 00147

472 M. Veloso et al.

Fig. 8. The internal structure of the Director module of the CMCast global architecture (see
Fig. 2).

we break up this section into the subsections of game history, event detection, and
action selection.

Figure 8 depicts the flow of data of the internal commentating algorithm within
the Director, supporting our detailed presentation on the three subtasks.

5.1. Game history

One challenge the commentator algorithm faces is to filter the raw inputs (as
described in Sec. 2) and summarize them in order to act. The full history would be
the sequence of all observations at all timesteps; however, the full history is large
and unwieldy for use in defining a policy mapping histories to actions. We only
wish to consider elements (or features) of the history that may be relevant to later
commentary. Hence, we introduce a Game History s ∈ S, where s is a tuple of vari-
ables, each of which corresponds to a single game statistic. The Director collects
and summarizes its inputs into the Game History s.

We denote this summarization process as the history-compilation function,
denoted as Θ : O �→ S. An example statistic is defined as ∆o = ot − ot−1,
which allows the algorithm to detect goals, since the output of the Game Con-
troller includes only the score at each timestep. A more complex statistic is the
current “streak” for the most recently scoring team (i.e., how many goals it has
scored without answer). Finally, the trivial “identity” statistic is of note, which
maintains the most recent observation ot.

In general, maintaining this sort of history allows comments relating to the devel-
opment of the game over time; formally, it transforms the non-Markovian process
over instantaneous game state information o ∈ O into a Markovian process over the
Game History variables s ∈ S, where the Game History is a sufficient statistic for



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 473

the commentator team to act. This sufficiency property is why we denote the game
history with the letter s, since it is essentially the state of the game, from the point
of view of the commentator algorithm.

5.2. Prioritized rule-based event identification

Now that we have filtered observations to only consider relevant information, we
must determine when to act. Vision processes information many times per second,
but it is certainly not necessary to change commentators’ actions at that rate;
although motion control might still operate at high frequency, high-level decisions
about how to commentate the game need not.

We consider events e ∈ E as those changes in game state that are “significant,”
as we define below through the use of a set of predefined rules or predicates. Many
events are determined by ∆o = ot−ot−1; these correspond to announcing immediate
changes in the game state, such as a goal (a change in the game score). More
generally, events require use of the game history s.

We define the event-identification function as P : S �→ E to capture a signifi-
cant event from the game history. Since the set of possible game statistics is quite
large, we specify the event-identification function using an ordered set of rules, or
predicates (p1, p2, . . . , pn) that apply to the Game History s. Each predicate pi has
an associated event and is a boolean-valued function. When pi(s) evaluates to true,
the associated event is detected. The order of the n predicates in the predicate list
indicates priority; we define the function P in terms of the predicates as follows:

P(s) =ei if:

pi(s) is true, and pj(s) is false ∀ j < i

P(s) =“null” if:

pi(s) is false ∀ i

where “null” is the special empty event for the case when all predicates are false.
The behavior of the algorithm is that the list of predicates is examined, in order,

and if a predicate pi evaluates to true, it “fires” its associated event ei and no
more predicates are processed. The ordering of the predicates captures the relative
significance among events. For example, goals have higher priority than other events,
as they need to be promptly announced. Although many predicates might be true
(i.e. many events might have occurred simultaneously), only a single one, the most
significant, is announced.

Additionally, the Puppet Master can generate events directly. This does not
break the formalism above, since we define a predicate and a corresponding event
for each Puppet Master signal. These predicates are listed first, so Puppet Master
commands have the highest priority; conceptually, if a human issues a command
through the Puppet Master, the event becomes a detected event.



December 26, 2008 14:2 WSPC/191-IJHR 00147

474 M. Veloso et al.

5.3. Action selection

The commentator algorithm uses the events e ∈ E to create a basic output as
an action a ∈ A. An action consists of (one or more) spoken utterances u ∈ U

and gestures g ∈ G. An action may be performed by one or both QRIOs, and
may be a single phrase/gesture pair or a sequence of several phrases and gestures.
When an action uses a sequence with both QRIOs, in a turn-taking fashion, a fully-
coordinated dialog is achieved. In particular, we use this dialog at the beginning of
the game for the QRIOs to make initial comments on the game, including announc-
ing facts about the teams in the game and predictions on which team the robots
think will win, similarly to many human sports commentators.

Formally, the commentator function C : E �→ A maps events e ∈ E to actions
a ∈ A. We construct C through the following steps:

(1) An atomic action of a robot r at time n is ar
n ∈ A. It consists of both an

utterance and a gesture, represented as an ordered pair (u, g).
(2) A joint action of both robots at time n is an ordered pair of atomic actions

(a1
n, a2

n) ∈ A × A.b

(3) An action is a sequence of joint actions of the two robots over time:
A =

(
(a1

1, a
2
1), (a

1
2, a

2
2), . . . (a

1
n, a2

n), . . .
)

= (A × A)∗. Different actions have
different sequence lengths.

(4) The commentator function is the composition of a deterministic function C1

mapping events to sets of possible actions and a non-deterministic function C2

for choosing a single action from this set:

C1 : E �→ 2A and C2 : range(C1) �→ A, such that C = C2 ◦ C1.

The importance of C1 is that it generates predictable robot behavior; for exam-
ple, when a goal occurs, the robots need to announce the goal. However, we do not
want them to announce it the same way every time, nor do we want to prescribe how
to announce it differently the first time, and any other time. Hence, we introduce
C2, which allows the robots to probabilistically and autonomously select from a var-
ied set of actions. For example, the actions for a goal event range from the simple
sentence “Goal!” to the more elaborate “An astonishing goal for the Blue team!”
followed by a celebratory dance. We specify C1 via an Action Library, consisting of
a list of potential actions for each event. For each event, C1 returns a set of actions
(in the power set of A), out of which one action is then returned by C2.

We specify C2 by maintaining a weight for each action wa, and the algorithm
samples the final action a to be returned from the list of actions returned by C1

with probability proportional to wa.c

To prevent repeating an action too much, we reduce the weight by a fixed quan-
tity ∆wa every time the action is used. Furthermore, we wish to prevent an action

bIn general, we could use R robots, such that joint actions would be in AR.
cWe could instead choose a = argmaxw, but we further simulate varied “replayability,” by choosing
the action through a non-deterministic sampling, even if we update the weights with time.



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 475

from being used in quick succession. As such, we introduce a “cool-down” effect by
modifying the actions’s weight over the time since its last use t such that: (1) the
probability of it being selected again immediately is zero, and (2) as t → ∞, its
probability should return to its base weight. The equation we use to achieve these
properties is:

wa(t) = (wa
0 − αa

t ∆wa) exp
(
−1

t

)

where wa
0 is the initial weight of action a, and αa

t keeps a count on the number of
times the action has been visited.

Note that we use different values of wa
0 and ∆wa for different actions, since

some phrases might be less pleasing or “get old” faster than others. Also note one
important consequence of our scheme: the maximum number of times an action can
be used is wa

0
∆wa , as the weight becomes zero when αa

t = wa
0

∆wa . After this point, the
action will never again be selected. We can set wa

0 and ∆wa with values that control
the amount of use of each action. If ∆wa = 0, then the action is always selected
probabilistically with its initial weight wa

0 .
By defining an action as a sequence of speech/gesture pairs for each robot,

we can achieve a wide variety of behaviors. In addition, we allow special “null”
utterances and gestures, so that this sequence indeed captures behavior that is just
speech or that uses only a single robot. For example, a full dialog action might be
the sequence:

t=1: ((“Excellent Goal!”, LiftArms), (null, Cheer1))
t=2: ((null, null), (“The fourth goal for blue in this game!”, TurnToRobots))
t=3: ((“Yes, blue is doing very well!”, LightUpLEDs), (null, LightUpLEDs))

where LiftArms, TurnToRobots, Cheer1, and LightUpLEDs are predefined gestures.
Table 2 summarizes the complete commentator algorithm in pseudo-code,

according to our description. The procedures are part of Director, as shown in
Fig. 8.

5.4. Examples of events and actions

A library captures the mapping from general (variabilized) events to actions of
(variabilized) utterances and gestures. Events, as generated from the compiled Game
History, are conceptually associated with an original source of input. Table 3 shows
a very short subset of the events and actions in the library, as well as the source of
the information used to generate the event, for clarity.

For example, the first event in the table is “Goal scored by ?Tx,” where ?Tx is
available particular team. The source of this event is the Game Controller (GC).
Three of many other actions the robots can choose to execute in response are shown
in the table. In the first action, the robot Commentator 1 says “What a great goal
by ?Tx,” while executing the gesture “LiftArms,” and the robot Commentator 2



December 26, 2008 14:2 WSPC/191-IJHR 00147

476 M. Veloso et al.

Table 2. The commentator algorithm to select an

action for a detected event, as part of Director.

procedure compileHistory(s,o):
1. ∆o = ot − ot−1

2. otherStats = updateStats(s,o)

3. s← o ∪∆o ∪ otherStats

procedure detectEvent(s):

1. for pi in predicates:
2. if pi(s):
3. return ei

4. return null

procedure selectAction(event):
1. actions = ActionLibrary(event)
2. weights = wa(t) for all a ∈ actions
3. a = sampleAction(actions,weights)
4. αa

t = number of times action a has been selected
5. ∆wa = weight update for action a

6. wa(t)← (wa
0 − αa

t ∆wa) exp(− 1
t
)

simply executes the gesture “Cheer 1.” We can see an example of the Commentators
speaking in unison, (“Goal!”) while carrying out different gestures. Table 3 shows
an example of an event that is originated from the Game History (GH), namely the
“First goal” event. In this action example, the robot Commentators conduct a con-
versation: “?Tx scores first in the game!” while executing gesture “LightUpLEDs”;
“Can team ?Ty catch up?”, while executing gesture “Dance1.”

Through the use of a large library of utterances and gestures, and an algorithm
that intelligently selects which events to act on, and which actions (utterances
and gestures) to use, we are able to achieve commentary that is entertaining and
informative. Our approach further ensures that the robots’ commentary is timely
and coordinated.

6. Conclusion

The commentator task is an interesting domain for humanoid robots. We present our
work on the first two humanoid commentators for the RoboCup AIBO robot soccer
games. The game is played on a large field, is highly dynamic, and is hard to com-
pletely specify an a priori model. We have presented two robot QRIO commentators
that detect a large set of events recognized from a computer Game Controller, a Pup-
pet Master, and the robots’ own vision detects color objects and can detect multiple
player. Our complete system, CMCast, is fully implemented and was demonstrated
at RoboCup 2006 event in multiple robot soccer AIBO games. The robot commen-
tators successfully and autonomously observed the game and announced the events
through varied utterances and motion adapting to the sequence of the game and
the different teams.



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 477

Table 3. Example: The large library of mapping of CMCast events to actions and their

detection sources (Src.), including Game Controller (GC), Puppet Master (PM), robot vision
(RV) and Game History (GH). Events and utterances include variables (marked with prefix
“?”) instantiated in the game, for the team name, team score, and event counters.

Event Src. Robot Commentator 1 Robot Commentator 2

Utterance Gesture Utterance Gesture

Goal scored by
?Tx

GC What a great LiftArms null Cheer1
goal by ?Tx!

null Cheer2 Incredible goal! Cheer3

Goal! Cheer2 Goal!! LiftArms

First goal GH ?Tx scores first LightUpLEDs null Dance1
in the game!

null Cheer2 Can team TalkGest1

?Ty catch up? TalkGest1

?N push robot
penalty team
?Tx

GC That was the TalkGest1 null null

?Nth robot
pushing foul.

null null ?Tx has been TalkGest3
called for
robot pushing

Nice kick RV Nice kick Cheer1 Wow! null
Red Team!

Nice save PM null Cheer2 Nice save! Cheer3
Good defense! Cheer2 null Cheer3

Power play
team ?Tx

GC Many ?Tx TalkGest2 null null
robots are out
of the field.
Great chance
for ?Ty.

null null Yes! Can ?Ty HeadNod1
take advantage
of it?

1mn left GC One minute TalkGest2 Go teams! TalkGest3

in the game!

Acknowledgments

This research was partly sponsored by BBNT solutions under subcontract no.
950008572, by the United States Department of the Interior under Grant no. NBCH-
1040007. Views and conclusions contained in this document are only of the authors.
We thank SONY for making the QRIOs available for our research, enabling our
development of this particular interesting commentator task. We further thank
SONY for their multiple developed motion and software features, which under-
lie our developed CMCast system. Finally, we thank the organizing committees
of RoboCup 2006 and of the RoboCup Four-Legged Robot League for allowing the
demonstration of CMCast at the International RoboCup 2006 in Bremen, Germany.



December 26, 2008 14:2 WSPC/191-IJHR 00147

478 M. Veloso et al.

References

1. H. Kitano, M. Fujita, S. Zrehen and K. Kageyama, Sony legged robot for RoboCup
challenge, in Proc. ICRA-98, 1998 IEEE Int. Conf. Robotics and Automation, Leuven,
Belgium (1998), pp. 2605–2612.

2. M. Veloso, W. Uther, M. Fujita, M. Asada and H. Kitano, Playing soccer with legged
robots, in Proc. IROS-98, Intel. Robots Syst. Conf., Victoria, Canada (October 1998),
pp. 437–442.

3. U. Visser, F. Ribeiro, T. Ohashi and F. Dellaert (eds.), RoboCup-2007: Robot World
Soccer XII, Lecture Notes in Computer Science, Vol. 5001 (Springer, 2008).

4. M. Fujita, K. Sabe, Y. Kuroki, T. Ishida and T. D. Toshi SDR-4XII: A small humanoid
as an entertainer in home environment, in Robotics Research: The Tenth International
Symposium, Springer Tracts in Advanced Robotics, Vol. 6 (2003).

5. E. André, G. Herzog and T. Rist, On the simultaneous interpretation of real world
image sequences and their natural language description: The system soccer, in Proc.
Eighth ECAI, Munich (1988), pp. 449–454.

6. E. André, K. Binsted, K. T. Ishii, S. Luke, G. Herzog and T. Rist, Three RoboCup
simulation league commentator systems, AI Mag. 21(1) (Spring 2000) 57–66.

7. I. Frank, K. Ishii, H. Okuno, J. Akita, Y. Nakagawa, K. Maeda, K. Nakadai and
H. Kitano, And the fans are going wild! SIG plus MIKE, in RoboCup-2000: Robot
Soccer World Cup IV, eds. P. Stone, T. Balch and G. Kraetzschmar (Springer Verlag,
Berlin, 2001).

8. K. T. Ishii, I. Noda, I. Frank, H. Nakashima, K. Hasida and H. Matsubara, MIKE:
An automatic commentary system for soccer, in Proc. Third Int. Conf. Multi-Agent
Systems, Paris (July 1998), pp. 285–292.

9. J. Bruce, T. Balch and M. Veloso, Fast and inexpensive color image segmentation for
interactive robots, in Proc. IROS-2000, Japan (October 2000).

10. Y. Ke and R. Sukthankar, PCA-SIFT: A more distinctive representation for local
image descriptors, Proc. CVPR 2 (2004) 506–513.

11. D. Lowe, Object recognition from local scale-invariant features, Proc. Seventh IEEE
Int. Conf. Comput. Vision 2 (1999) 1150–1157.

12. S. Se, D. Lowe and J. Little, Vision-based mobile robot localization and mapping using
scale-invariant features, Proc. 2001 ICRA IEEE Int. Conf. Robotics and Automation
2 (2001).

13. M. Moradi, P. Abolmaesoumi and P. Mousavi, Deformable registration using scale
space keypoints, Proc. SPIE 6144 (2006), 61442G.

14. K. Mikolajczyk and C. Schmid, A performance evaluation of local descriptors, IEEE
Conf. Comput. Vision Pattern Recogn. 2 (2003) 257–264.

15. S. Zickler and M. Veloso, Detection and localization of multiple objects, in Proc.
Humanoids 2006, Genoa, Italy (December 2006).

16. S. Zickler and A. Efros, Detection of multiple deformable objects using PCA-SIFT,
in Proc. AAAI 2007, Vancouver (July 2007).

17. K. Gowda and G. Krishna, Agglomerative clustering using the concept of mutual
nearest neighborhood, Pattern Recogn. 10(2) (1978) 105–112.

18. Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Trans. Pattern Anal. Mach.
Intell. 17(8) (1995) 790–799.

19. Cepstral Text–to–Speech, http://www.cepstral.com/.



December 26, 2008 14:2 WSPC/191-IJHR 00147

A Team of Humanoid Game Commentators 479

Manuela Veloso is Herbert A. Simon Professor of Computer
Science at Carnegie Mellon University. She received a licenciatura
in Electrical Engineering, and an M.Sc. degree in Electrical and
Computer Engineering from the Instituto Superior Técnico in
Lisbon. She earned her Ph.D. degree in Computer Science from
Carnegie Mellon. Veloso researches in planning, control learning,
and execution algorithms, in particular for multi-robot teams.
With her students, Veloso has developed teams of robot soccer

agents, which have been RoboCup world champions several times. She is a Fellow
of AAAI, the Association for the Advancement of Artificial Intelligence, an IEEE
Senior member, and the President of the RoboCup Federation.

Nicholas Armstrong-Crews is a Ph.D. student in the
Robotics Institute at Carnegie Mellon University. He hails from
Alaska, where he studied computer science, mathematics, and
natural sciences at the University of Alaska Anchorage. He is
co-advised by Manuela Veloso and Geoffrey Gordon, with whom
he studies decision theory under uncertainty for application in
robotics.

Sonia Chernova is a Ph.D. student in the Computer Science
Department at Carnegie Mellon University. She received her B.S.
in computer science and robotics from Carnegie Mellon Univer-
sity in 2003. Her research interests include learning in robotic
systems and human-robot interaction.

Elisabeth Crawford is a Ph.D. student in the Computer Sci-
ence Department at Carnegie Mellon University. She has a BSc.
Hons. (I) from the University of Sydney, Australia. Her research
interests include multiagent learning and negotiation.



December 26, 2008 14:2 WSPC/191-IJHR 00147

480 M. Veloso et al.

Colin McMillen is a Ph.D. student in the Computer Science
Department at Carnegie Mellon University. He has worked in
the RoboCup Four-Legged Robot League since 2003, focusing on
high-level team strategy and multi-robot coordination. In partic-
ular, his dissertation aims to address how agents in timed, zero-
sum games should change strategies based on the score of the
game and the time remaining.

Maayan Roth received her Ph.D. from the Robotics Institute
at Carnegie Mellon University in 2007. Her thesis, “Execution-
time Communication Decisions for Coordination of Multi-
agent Teams,” explores the use of communication heuristics
to improve the performance and tractability of decentralized
partially observable Markov decision processes (Dec-POMDPs).
Currently, Maayan is working as a software engineer at Google
in Haifa, Israel.

Douglas Vail is a Ph.D. student in the Computer Science
Department at Carnegie Mellon University. He has worked with
the AIBO robots and RoboCup since 2002. His research inter-
ests include robotics, machine learning, and activity recognition.
In particular, he is interested in feature selection in conditional
random fields for activity recognition in robot domains.

Stefan Zickler is a Ph.D. student in Computer Science at
Carnegie Mellon University. He received his B.A. in Cognitive
Science with minors in Computer Science and Linguistics from
SUNY Buffalo in 2005. His main research focuses on physics-
based behavioral motion planning for robot applications. Other
research interests include real-time computer vision and multi-
agent behavioral control.


