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Abstract

We describe two sales strategies used by our agent, Min-
neTAC, for the 2003 Supply Chain Management Trading
Agent Competition (TAC SCM). Both strategies estimate,
as the game progresses, the probability of receiving a cus-
tomer order for different prices and compute for each the
expected profit. Offers are made to maximize the expected
profit. The main difference between the strategies is in the
way the probability of receiving an order is updated, and in
the way an offer price is calculated. The first strategy works
well in high demand games, but not as well in low-demand
games. The second was developed to improve performance
in low-demand games. We empirically analyze the effect of
the discount given by suppliers on orders received the first
day of the game. We show that in high-demand games there
is a strong correlation between the offers an agent receives
from suppliers on the first day of the game and the agent’s
performance in the game.

1. Introduction

Competitive scenarios are increasingly being used as
testbeds for the development of multiagent systems. A new
game, called TAC SCM, was introduced for the 2003 Trad-
ing Agent Competition [1]. This game involves a supply
chain management (SCM) scenario in which agents attempt
to maximize profits by manufacturing personal computers
and selling them to customers.

The TAC SCM competition is interesting for many rea-
sons. Agents participating in a TAC game must base their
decisions on limited information about the state of the mar-
ket and the strategies of other agents. Agents must simul-
taneously compete in two separate but interrelated markets:
the market from which the agents must buy their supplies
and the market to which the agents must sell their finished
products. Agents have a large number of decisions to make
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in a limited time, so the computational efficiency of the
decision-making process is important.

We describe two sales strategies used by our agent, Min-
neTAC, in high-demand and low-demand games. We an-
alyze a number of games and show how the start-effect
caused by the large discount given by suppliers on orders
made on the first day, coupled with the random order in
which agent requests are considered, affects the outcome
of the game.

2. Overview of TAC SCM

Six autonomous agents compete to maximize profits in
a computer-assembly scenario. The simulation takes place
over 220 virtual days, each lasting fifteen seconds of real
time. Each agent has a bank account with an initial balance
of zero. The agent with the highest bank balance at the end
of the game wins. Agents earn money by selling comput-
ers they assemble out of parts purchased from suppliers.

To obtain parts, an agent must send a request for quotes
(RFQ) to an appropriate supplier. Each RFQ specifies a
component type, a quantity, and a due date. The next day,
the agent will receive a response to each request. Suppliers
respond by evaluating each RFQ to determine how many
components they can deliver on the requested due date and
how long it would take to produce all the components re-
quested, considering the outstanding orders they have com-
mitted to and the RFQs they have already responded to this
turn. If the supplier can produce the desired quantity on
time, it responds with an offer that contains the price of the
supplies. If not, the supplier responds with two offers: (1) an
earliest complete offer with a revised due date and a price,
and (2) a partial offer with a revised quantity and a price.
The agent can accept either of these alternative offers, or re-
ject both. Suppliers may deliver late, due to randomness in
their production capacities. If the supplier has excess capac-
ity, the price will be discounted; discounted prices may be
as low as 50% of the base price.

Every day each agent receives a set of RFQs from po-
tential customers. Each customer RFQ specifies the type of
computer requested, along with quantity, due date, reserve
price, and late penalty. Each agent may choose to bid on



some or all of the day’s RFQs. Customers accept the low-
est bid that is at or below the reserve price, and notify the
agent the following day. The agent must ship customer or-
ders on time, or pay the penalty for each day an order is late.
If product is not shipped within five days of the due date the
order is cancelled, the agent receives no payment, and no
further penalties accrue.

3. A Priori Game Analysis

Prior to the competition, we analyzed the game to deter-
mine the bottlenecks, where a bottleneck on some day d is
the factor which limits the production of PCs on day d.

We identified three types of bottlenecks: (1) a demand
bottleneck, which is in effect if the demand for PCs is less
than the agents’ production capacities and the amount of
available supplies, (2) a production bottleneck, which is in
effect if the limiting factor is the agents’ production capaci-
ties, and (3) a supply bottleneck, which is in effect when the
limiting factor is the amount of available supplies.

The maximum potentially profitable production of PCs
on a day can be computed as:

productionpcs = min(demandpcs X bid_proportionpcs,

production_capacitypcs,
supplies_availablepcs)
(1)

where
demandpcs = # RFQs x RFQ_quantity' (2)

and bid_proportionpc;, is the proportion of demandpc
which actually receives bids. If the reserve price specified
in the RFQ is higher than the price of the components
used to make the PC, an agent can make a profit by bid-
ding at or below the reserve price, assuming it has pro-
duction capacity and components. Since customers’ reserve
prices are chosen randomly in the interval of 75% to 125%
of the maximum price of the components, approximately
half of the RFQs will specify reserve prices that are defi-
nitely higher than the cost of the components. Therefore, we
can put a lower bound of 0.5 on bid_proportionpcs. How-
ever, components are often available at a discounted rate
if the agents order them ahead of time, so in some games
bid_proportionpcs may be as high as 1.0.

We define production_capacitypcs as the maximum
total number of PCs that can be produced daily by agents’
production lines:

- - __ F#cyclesx# agents
production_capacitypcs = e yclesary 3)

where # cycles per day per agent is 2000, there are six
agents, and the average number of cycles required to pro-

1 the notation z denotes the sample mean of the variable z.

duce a PC is 5.5. The average number of cycles is com-
puted assuming that each agent has sufficient supplies and
that each of the 16 types of PCs is produced in equal quan-
tities, as cyclesgpg = Zgl cycles; /16 = 88/16 = 5.5.
This results in production_capacitypcs = 2181.

We define supplies_available pcs as the number of PCs
that can be built from the supplies available in a day, assum-
ing that suppliers are producing at maximal capacity. Every
PC requires four components, one each from the categories
of CPUs, motherboards, memory modules, and hard disks.
Components in each category are produced with equal fre-
quency. Thus

supplies_availablepcs = suppliesmaz /4

where suppliesmq, 1s the maximum number of supplies
produced in a day. To calculate supplies;,q., We need to
determine the amount of supplies produced daily by each
of the eight suppliers. A supplier ¢ has a production capac-
ity C; that is determined on each day d by a mean reverting
random walk with a lower bound:

Cz(d) = max(O, Cl(d - ].)
+random(—0.05,0.05) X Crominal
40.01 x Cnominal - Cl(d - 1))

where Cpominat 1S the nominal capacity, which is specified
as 500 components per day. C;(0) = Crominal is used to
compute C;(1), the supplier’s production capacity on the
first day of the game.

We can now calculate supplies_availablepcs for a
given day d:

8
supplies_availablepcs(d) = Z Ci(d)/4 4)

i=1

and combine the results of Equations 1, 2, 3, and 4 to pre-
dict the maximal number of PCs produced in a day d:

productionpcs = min (# RFQs x RFQ_quantity

xbid_proportionpcs,

# cycles
cyclesany < # agents,

oo ci<d)/4)
(5)

In a typical game, the initial average number of customer
RFQs is 200 per day. For simplicity, we will assume that
the number of RFQs per day is always exactly 200, and
that suppliers’ daily capacity is always the nominal ca-
pacity of 500 components per day. We also assume that
bid_proportionpcs = 0.5; that is, we assume that agents
are not able to obtain supplies at a discounted rate. We also
assume RF'Q_quantity = 10.5, since the average quan-
tity specified in each RFQ is chosen randomly from a uni-



form distribution over the interval [1,20]. We can then sub-
stitute these values into Equation 5 to obtain:

productionpcs = min(200 x 10.5 x 0.5,
2000 x 6/5.5,
%, 500/4) = 1000

This result shows that the most likely bottleneck for a typ-
ical game is supply availability. In fact, the availability of
supplies is the most probable bottleneck as long as the num-
ber of RFQs per day is greater than 190. (If # RFQs =
190, then E[demandpcs] X bid_proportionpcs = 190 x
10.5 x 0.5 = 997.5 < 1000.)

Since the initial average number of customer RFQs is
chosen randomly from a uniform distribution over the range
[80, 320], approximately 45.8% of games will start off with
a demand bottleneck. A greater number of games might en-
ter a demand bottleneck after some period of time due to
fluctuations in the average number of customer RFQs.

In the above calculations we assumed that
bid_proportionpcs = 0.5. If agents get supplies at a dis-
counted price, then we expect that bid_proportionpcs will
be greater than 0.5. The availability of supplies is then
even more likely to be a bottleneck. Competition experi-
ence indicates that a substantial number of supplies are in-
deed obtained for less than the maximum price. The above
calculations also suggest that agents’ production capaci-
ties are not likely to be a bottleneck in any game in which
there are at least three functioning agents. However, a sin-
gle agent could be limited by its production capacity
if it acquires substantially more supplies than its oppo-
nents.

4. MinneTAC Performance Analysis

The analysis of the bottlenecks led us to decide on a
supply-driven strategy. Building to order would be a good
strategy in the case of a demand bottleneck. However, since
the most likely bottleneck is a supply bottleneck, a supply-
driven strategy seems preferable.

Ideally, an agent’s strategy should be flexible and ad-
just dynamically in each game without a priori assump-
tions. Because of the first day discount, an agent is better
off making an uninformed a priori estimate of customer de-
mand and ordering most of the components it anticipates us-
ing on the first day. The drawback to this approach is that
if an agent acquires too many components, it may be forced
to sell them at loss, since the components have no value at
the end of the game.

4.1. MinneTAC sales strategies

We designed, implemented, and compared two variants
of a supply-driven sales strategy, that we call MaxEProfit

and DemandDriven.

Each day the strategy chosen determines an offer price
for each RFQ. Offers are made only from the uncommitted
finished goods inventory and are sorted by decreasing profit
margin, where ProfitMargin = (price — cost)/price. For
each offer made the agent reserves a fraction of the comput-
ers offered according to the probability of receiving an or-
der, porder, 1.€.

reserved_quantity = RFQ_quantity X porder(RFQ)

This can, and sometimes does, lead to overcommitment and
late delivery. It also requires that we estimate porder; the
two strategies use different methods to produce this esti-
mate.

To compare these strategies we have created two varia-
tions of MinneTAC, that called Tabaluka and Eini. Tabaluka
uses MaxEProfit, MinneTAC and Eini use DemandDriven.

Both MaxEProfit and DemandDriven control inven-
tory by pulling stock; procurement and production work to
maintain target inventory levels until late in the game. Both
commit inventory to customer offers, but differ in the way
they set prices, and in the way they estimate the probabil-
ity of offer acceptance.

Because of the way customer demand is generated in the
game server, most games can be classified as either high or
low customer demand [2]. We will analyze our two strate-
gies in a high-demand and a low-demand game (see Ta-
ble 1). We will focus our comparison on product 4. Simi-
lar results can be shown for the other products. The nomi-
nal price, which is the sum of the base cost of the four indi-
vidual components, for product 4 is $1850.

In Figure 1, we show the aggregate demand curve for
product 4 over the two games by price. The aggregate de-
mand curve for a high-demand game is very different from
the curve for a low-demand game There is demand for com-
puters in the high-demand game at prices above and below
the nominal price, but in low-demand games the bulk of the
demand is even below the minimum reserve price, which
equals 75% of the nominal price.

Table 2 compares the results of the two strategies over a
series of high-demand ? and low-demand games * all played
on tac5.sics.se:8080. We calculated the minimum, average
and maximum score of each strategy in those set of games.
We can see that MaxEProfit is better able to take advan-
tage of high-demand games, but generally performs worse
in low-demand games.

4.1.1. MaxEProfit The MaxEProfit strategy determines
an offer price that maximizes the expected profit margin

2 2385,2393,2396,2401,2407,2409,2410,2411,2412,2416,
2419,2420,2421,2594,2597,2598,2603,2607,2612,2613
3 2383,2387,2390,2392,2394,2399,2415,2417,2423,2425,
2426,2492,2593,2595,2599,2600,2604,2610,2614,2640



Game Agents and their Result (in $M) Customer Demand in RFQs
Number 1 2 3 5 6 #RFQ #RFQ/day o
2214 team?2 RedSox  MinneTAC arnoch RedAgent  Eini | 21778 99.44  51.8
-10.43 -18.3 -31.06 -34.87 -38.08 -39.83
2218 Tabaluka RedAgent arnoch MinneTAC team?2 Eini | 65626 299.66 42.14
31.23 30.69 23.24 20.8 8.86 7.89

Table 1. Summary of the games examined. #RFQ is the total number of RFQs during the game, #RF(Q/day is the mean
number of RFQs/day, and o is the standard deviation. Customer RFQs are issued over 219 days in a game. Eini and
Tabaluka are disguised MinneTAC agents. Eini and MinneTAC use DemandDriven and Tabaluka uses MaxEProfit.
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Figure 1. Games 2214 and 2218 — Aggregate
demand curves for product 4 over the games.

from a potential customer order x:
E[ProfitMargin(z)] = ProfitMargin(z) X porder ()

with the constraint that price > targetAveragePrice.
ProfitMargin is calculated on the agent’s moving aver-
age cost of the components. targetAveragePrice is an in-
ternal parameter that reflects the current market prices. The
parameter is adjusted every 5-days based on the orders re-

High | Low
Strategy Values (in $M)
Min| Avg| Max| Min| Avg| Max
MaxEProfit  -12.02(12.3035.99-66.90+44.44 |-7.36

DemandDriven-23.65| 8.7030.89-57.15+34.4930.89

Table 2. Performance comparison of the Max-
EProfit (Tabaluka) and the DemandDriven
(Eini) strategy in high-demand and low-
demand games.

ceived, and every 20-days based on the market report,
time left in the game, production rate, uncommitted fin-
ished goods inventory level, and customer demand. This
parameter helps to ensure that the agent is not left with win-
ning only unprofitable RFQs.

Porder 18 the estimated probability of receiving a cus-
tomer order. This probability is influenced by the reserve
price, quantity, lead-time, penalty, and product type speci-
fied in the RFQ, and also by the price specified in the of-
fer. MaxEProfit models this probability as a 6-dimensional
order_prob matrix with the following dimensions: of-
fer_price, quantity, lead_time, reserve_price, penalty, and
product_type. Each entry in order _prob contains the prob-
ability that a customer will accept an offer given the values
of the parameters.

Since the values in order_prob are estimates, they are
updated during the game whenever an offer is accepted or
rejected. Initially the values are all set to 1, making the agent
optimistic.

4.1.2. DemandDriven The DemandDriven strategy deter-
mines an offer price for a customer RFQ based on a tar-
get probability of receiving a customer order, target_prob,
from a reverse cumulative density function (CDF) that mod-
els the oder probability. The objective is to make offers to
sell out the inventory by the end of the game. target_prob
(see Equation 6) is calculated every 5-days based on the cur-
rently observed market conditions (customer demand, and
time left in the game) and on internal parameters (produc-
tion rate and uncommitted finished goods inventory for a
specific product).

1 avail _FG+# built X days_left ) (6)
’ estimated _demand

target_prob=min(
where avail _FG is the number of finished goods available
in the inventory for a particular product. # built is the num-
ber of units of the product built each day, days_left is the
number of days left in the game, and estimated _demand is
an internal parameter that forecasts future demand.

DemandDriven models the probability of customer order
as a 5-dimensional order_prob matrix having the follow-
ing dimensions: offer_price, customer_demand, lead_time,
reserve_price, and product_type. The values of cus-
tomer_demand are discretized into 3 ranges: low, medium,
and high; lead_time is discretized into short and long.



The order_prob matrix is pre-populated with values ob-
tained from analysis of several past games. DemandDriven
assumes that only a shift of the whole order probability
curve could occur during the game, so, instead of updat-
ing the values of order_prob as done by MaxEProfit, every
five days it shifts the values toward higher or lower prices
depending on the difference between the acceptance rate of
its offers and target_prob.

4.2. Performance in high-demand games

We show now how MaxEProfit, which is the strategy
used by agent Tabaluka, performs in a high-demand game.
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Figure 2. Game 2218 — Timeline for market re-
port: Predicted vs actual values of Tabaluka
(MaxEProfit) for product 4.

In Figure 2 we show the market reports every twenty
days and compare them with Tabaluka’s predictions. Since
predictions are updated every 5 days, we show the agent
predictions and the real prices over the same periods. In ad-
dition we show the offers made and the orders received by
Tabaluka. A circle with a cross inside symbolizes an ac-
cepted order.

The inventory of finished goods was mostly empty until
halfway through the game, as we can see in Figure 3. When
the inventory is empty the sales strategy doesn’t learn and
makes no offers. This situation can be seen as a straight line
in Figure 2 for the predicted product price. We observe that
predicted product prices match well actual product prices,
even though the prediction often over- and undershoots the
real values.

Inventory Status for Product 4
Tabaluka with MaxEProfitSalesMgr in tac5.sics.se:2218
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Figure 3. Game 2218 — Timeline inventory sta-
tus of Tabakula for product 4.

Towards the end of the game this sales strategy tries to
sell out the uncommitted finished goods inventory if the fin-
ished goods inventory level is higher than what the agent
thinks it will be able to sell.

We can see the relationship between offer/order prices
and reserve prices in Figure 4. We observe that in this case
the reserve and order prices are close. This is not the case in
every game.

Reserve vs. Order Price for Product 4
Tabaluka with MaxEProfitSalesMgr in tac5.sics.se:2218
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Figure 4. Game 2218 — Offer and order prices
of Tabaluka vs reserve price for product 4.




We now analyze the performance of MinneTAC, which
uses the DemandDriven strategy, in the same game we ex-
amined earlier. Figure 5 shows the same information as Fig-
ure 2, but for DemandDriven.

Average Prices for Product 4
MinneTAC with DemandDrivenSalesMgr in tac5.sics.se:2218
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Figure 5. Game 2218 — Timeline for market re-

port: Predicted vs actual values of MinneTAC
(DemandDriven) for product 4.

We can see the relationship between offer/order prices
and reserve prices of MinneTAC in Figure 6. We observe
that in this case the reserve and order prices are not as close,
as for agent Tabaluka in the same game (see Figure 4). The
reason is that MinneTAC uses DemandDriven, which tries
to clear the inventory by the end of the game. Therefore we
observe quite a few offer and order prices far under the re-
serve price. DemandDriven is often too aggressive in selling
goods because it assumes that a constant supply of raw ma-
terial is being supplied until the end of the game. This is
a drawback of DemandDriven that causes the agent to sell
goods when it would be better off holding out for a higher
price.

4.3. Performance in low-demand games

We will now analyze the performance of the Demand-
Driven strategy in low-demand games. MaxEProfit is not
discussed here, since the analysis is similar.

The first day MinneTAC orders large amounts of com-
ponents. The sales strategy starts to make offers only when
there are finished goods in the inventory. Whenever fin-
ished goods are almost sold out, MinneTAC purchases new
components to retain a certain level of raw inventory. This
is problematic in very low-demand games, since the agent

Offer and Order Price in $

Reserve vs. Order Price for Product 4
MinneTAC with DemandDrivenSalesMgr in tac5.sics.se:2218
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Figure 6. Game 2218 — Prices (offer and or-
der) vs reserve price of MinneTAC for prod-
uct 4.
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Figure 7. Game 2214 — Total number of RFQs.
This is a low-demand game.

ends up with too many components and finished goods in
the inventory. In Figure 7 we can observe that the game
started off as a high-demand game, but after a short time
the customer demand dropped to a very low level. A sudden
mode change like this or a constant low or high-demand sit-
uation arises nearly in every game. In Figure 8 we can see
MinneTAC’s predictions versus the market reports, and the
orders and offers made through the game. We can observe

220



Average Prices for Product 4
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Figure 8. Game 2214 — Timeline for market re-
port: Predicted vs actual values of MinneTAC
for product 4.

Reserve vs. Order Price for Product 4
MinneTAC with DemandDrivenSalesMgr in tac5.sics.se:2214
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Figure 9. Game 2214 — Prices (offer and or-
der) vs reserve price of MinneTAC for prod-
uct 4.

how well the prices offered tracked the real market price.
Offer and order prices decrease with respect to the re-
serve prices as the game progresses (see Figure 8). In a low-
demand situation like this, the competition to sell out prod-
ucts is very high and therefore the prices lower so much. In
high-demand games the prices are usually between 75% and
125% of the nominal product price (see Figures 4 and 6),

while the bulk of the orders in this low-demand game is far
below 75% of the nominal product price (see Figure 9).

5. Analysis of Start-Effect

We will now analyze the start-effect in the game and
show that the total volume an agent orders on the first day
and the timeliness of the offers that it accepts have a strong
impact on that agent’s final score.

We developed a start-effect measure called delay mea-
sure (DM). DM (see Equation 7) is the delay, in days, in
delivering the components weighted by the component to-
tal value. In this equation BPrice refers to the component’s
base price and DDate refers to the due date of the offer.

#RIQ Qty(RFQ:) x BPrice(RFQ;)x DDate(Of fer:)
DM = 1= Z#RFQS Qt i . i
y(RFQ;)xBPrice(RFQ;)

i=1

(N
Game 2218 was taken as an example for calculating the
start-effect. Results are shown in Table 3. The measure
works exceptionally well for high-demand games, but not
as well for low-demand games. We can conclude that a low
value of DM leads to a better final score. Tabaluka had the
lowest DM and ended up first, Eini had the highest DM and
came in last. A low delay measure is only an effective in-
dicator when a high volume of goods is ordered on the first
day. In this game team2’s low DM is not a good indica-
tor of its final result because of its low order volume on the
first day.

In addition to looking at single games we looked at
high-demand and low-demand games played at the 2003
International Conference for Electronic Commerce (Pitts-
burgh, October 2003). The games make a good test set
because the configurations for each agent didn’t change
much and the agents themselves were robust. To determine

if a game is high-demand or low-demand, we looked at
- Z#ComputersOrdered
- ActivePlayers

with the highest # and lowest 3 ratios. Then we calculated

the correlation coefficients between the bank status at the
end of the game, the volume of first day orders, and the de-
lay measure.

In the high-demand games we calculated a correlation
coefficient of 0.5381 between the bank status and the to-
tal amount ordered on the first day, and a correlation coeffi-
cient of -.03456 between bank status and the delay measure.
This shows that in high-demand games there is a strong re-
lationship between the amount of parts an agent orders on
the first day and their final score. There is also a strong rela-
tionship between the delay measure and the final score, per-

ratio and selected the 20 games

4 1641,1646,1650,1651,1652,1660,1661,1662,1663,1665,
1666,1667,1670,1673,1674,1682,1683,1685,1686,1690
5 1640,1642,1643,1644,1649,1653,1654,1657,1658,1659,
1668,1669,1671,1672,1676,1679,1680,1681,1687,1688



Total Values (in $M) of
RFQs|Timely|Orders Discount| Final| DM
Offers Result| (days)
Tabaluka (142.93| 57.90|118.48| 59.24|31.23| 73.57
RedAgent (132.03| 0.00| 14.80| 57.40|30.69| 91.94
arnoch 79.00| 7.97| 42.24| 21.12|23.24| 92.40
MinneTAC[142.93| 28.31| 95.46| 47.73|20.80(102.39
team?2 2.00| 0.00f 2.00 1.00| 8.86| 51.35
Eini 142.93| 21.18| 72.27| 36.13| 7.89(119.63

Agent

Table 3. Start-Effect for Game 2218: RFQ is
the value of the components requested the
first day, Timely Offers is the value of the
components offered at the requested time,
Orders is the value of the components or-
dered, and Discount is the discount (50%) ob-
tained. DM is the delay measure in days.

haps because agents which received better offers were more
likely to accept them. This indicates that the order in which
suppliers process RFQs has a strong impact on the outcome
of high-demand games.

In low-demand games the correlation coefficient be-
tween bank status and the total amount ordered on the first
day was -0.3242 and the correlation coefficient between
bank status and DM was 0.3904. This indicates that agents
who did not order a lot of parts (perhaps because they re-
ceived poor offers on the first day) did better in low-demand
games, because they were less likely to be trapped with in-
ventory they could not sell at a profit.

6. Related Work

Stone [4] discusses multi-agent competitions, including
RoboCup and TAC. He gives an overview of the rules of
these competitions, notes some similarities and differences
between the two, and shares his views on the benefits and
drawbacks of such competitions. Wellman [5] analyzed and
developed metrics for price prediction algorithms in the
TAC Classic game similar to what we have done for TAC
SCM. Predicting prices is an important part of the deci-
sion process of agents. Our strategies have been inspired
by the work of Kephart et al. [3], who explored several
dynamic pricing algorithms for information goods, where
shopbots look for the best price, and pricebots try to adapt
their posted prices to attract the most business.

7. Conclusions and Future Work

There are a number of factors which can limit agent per-
formance in the TAC SCM game. The limit to an agents

profitability is usually either customer demand or supplier
capacity. Due to the bimodal nature of the customer demand
algorithm this limit is usually severe.

MinneTAC orders parts based on the assumption of a
supplier capacity bottleneck (high-demand game). We have
explored two different sales strategies to compensate in the
case of a customer demand bottleneck (low-demand game).
Both MinneTAC s sales strategies were competitive in high-
demand games, but often sold larger quantities at lower mar-
gins compared to other agents. Even though the Demand-
Driven strategy performs better than the MaxEProfit strat-
egy in low-demand games it is still unable to compensate
for the large number of parts ordered on the first day.

Agents in TAC SCM must decide how many parts to or-
der from suppliers on the first day, and this decision has
a strong influence on their performance in the rest of the
game. We have developed a measure to describe the qual-
ity of supplier responses to an agents RFQs. A low value in-
dicates timely delivery dates, and correlates with good per-
formance in high-demand games. However, in low-demand
games a low value correlates with bad performance. This in-
dicates that the order of supplier response to agent RFQs is
very important on the first day of the game.
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