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Abstract 

Collisions between vehicles at urban and rural intersections account for nearly a third of all 

reported crashes in the United States.  This has led to considerable interest at the federal level in 

developing an intelligent, low-cost system that can detect and prevent potential collisions in real- 

time.  We propose the development of a system that uses video cameras to continuously gather 

traffic data at intersections (e.g., vehicle speeds, positions, trajectories, 

accelerations/decelerations, vehicle sizes, signal status etc.) which might eventually be used for 

collision prediction.  This paper describes some of the challenges that face such a system as well 

as some of the possible solutions that are currently under investigation. 

 

Introduction 

Statistics from the crash database of the National Highway Traffic Safety Administration  

(NHTSA) show that in 1998 there were about 1.7 million vehicle crashes at intersections that 

accounted for as much as 27% of all reported crashes for the year and resulted in about 6,700  

fatalities [1], [2].  The problem is expected to get worse with the continued proliferation of urban 

sprawl and the corresponding increases in traffic volumes and travel distances.  Hence, there is 

considerable interest at the federal level [3] in the design and implementation of intelligent, real-

time systems that can use knowledge of current traffic conditions at an intersection and its 

vicinity to predict potential collisions or near-misses and issue suitable countermeasures.  We 

call this the Intersection Collision Warning and Avoidance (ICWA) problem. 

 

Effective solutions to the ICWA problem must deal with a number of complex issues: 



 They must be able to integrate and synchronize temporal traffic information from a 

variety of sensors (e.g., multiple cameras from a computer vision-based system, radar, 

and GPS).  

 They must process this information, detect collisions or near-misses, and issue 

countermeasures in real-time (e.g., at 10–15 Hz.)  

 They must account for various trajectories of the vehicles.  For instance, at the 

intersection, the vehicles in question may be moving at right angles to each other or they 

may be moving in opposite directions when one of them suddenly attempts a turn at the 

intersection.  

 They must account for different vehicle speeds and acceleration/deceleration in the 

vicinity of the intersection.  

 They must be able to process large numbers of vehicles moving relatively slowly (e.g., a 

suburban intersection) as well as few vehicles moving at high speed (e.g., a rural 

intersection).  

 They must be able to distinguish between different types of vehicles (e.g., buses are 

longer than cars, so they have a larger collision profile and also make wider turns).  

  They must account for pedestrians and cyclists crossing at the intersection (e.g., could 

these be treated as “vehicles” in their own right?).  

 They must have effective means for communicating countermeasures.  

 They must take into account other factors, such as the status of signals (if any) at the 

intersection and its vicinity, any signals issued by vehicles (e.g., flashing turn signals), 

the geometry of the intersection, current weather conditions (e.g., stopping distances in 

the winter are longer than in the summer), and the effect of countermeasures issued (e.g., 



does a suggested countermeasure such as a flashing warning light cause a vehicle to 

brake suddenly and create the potential for additional collisions?). 

 

Developing a full-fledged system as discussed above is our long-term goal.  We envision that 

such a system would consist of three interacting modules, as shown in Figure 1. At present, we 

have initiated this process with a technology feasibility study for a system that includes some of 

the above features.  The system we are currently developing will incorporate computer vision 

techniques to gather traffic and other data at intersections.  We plan to test our solution both via 

computer simulations and via field tests at actual intersections, such as an intersection between a 

highway and a major county road in a suburb of Minneapolis, MN, and a suburban intersection 

in St. Paul, MN.   

 

 

Figure 1.  The complete ICWA system.  This focus of this paper is on the Vision Module and the 

Collision Prediction Module. 

 

Previous Work 

Our research group's earlier projects on pedestrian tracking, vehicle detection, tracking and 

classification, and intersection control are the basis of the new system.  In particular, O. Masoud, 

S. Gupte, and N. Papanikolopoulos have developed a method that can detect, track, and classify 

vehicles by establishing correspondences among vehicle entities and “blobs” (regions of motion) 



in the image.  This technique has been used for the collection of data at weaving sections where 

vehicles need to be tracked as they change lanes.  Unlike commercially available systems 

(Nestor's CrossingGuard and TrafficVision, Trafficon, PEEK, Solo, Odetics' Vantage), our 

approach treats the vehicles as separate entities with specific geometric and kinetic properties 

and constraints.  This allows us to follow them as they move from lane to lane.  The weaving 

system has already been used by Dr. Eil Kwon (Minnesota Department of Transportation) to 

collect data from weaving sections.  Understanding characteristics of accident-prone 

intersections along with the design of new operational guidelines will help us to better monitor 

those intersections so that we can help to prevent accidents. 

 

Some work done that is close to our approach is work in the area of three-dimensional vision-

based tracking.  Three-dimensional tracking uses models for vehicles and aims to handle 

complex traffic situations and arbitrary configurations.  A suitable application would be 

conceptual descriptions of traffic situations [5].  Robustness is more important than 

computational efficiency in such applications.  Kollnig and Nagel [6] developed a model-based 

system in which they proposed to use image gradients instead of edges for pose estimation.  In 

another relevant piece of work, the same authors increased robustness by utilizing optical flow 

during the tracking process as well.  Nagel et al. [7] and Leuck and Nagel [8] extended the 

previous approach to estimate the steering angle of vehicles.  This was a necessary extension to 

handle trucks with trailers, which were represented as multiple linked rigid polyhedra.  

Experimental results in Leuck and Nagel [8] compared the steering angle and velocity of a 

vehicle to ground truth showing good performance.  They also provided qualitative results for 

other vehicles showing an average success rate of 77%.  Tracking a single vehicle took 2-3 



seconds per frame.  However, our proposed approach can handle a large number of vehicles in 

real-time.  Finally, ours is the only effort of which we are aware that does vehicle tracking using 

a set of cameras (and can track a vehicle as it moves from one camera's field of view to 

another's). 

 

Our group has also done work on collision prediction, motivated by applications in air traffic 

control and robotics, albeit under rather simple assumptions [4]. For instance, given a collection 

of point-objects, moving with different speeds and along given trajectories, the algorithms in [4] 

can compute very rapidly the potential collisions and near-misses in the system (near-misses are 

based on a user-specified threshold distance up to which the moving points can approach each 

other safely). These methods have been extended to deal with entities modeled by rectangular 

bounding boxes and moving along orthogonal trajectories. The solutions are based on advanced 

algorithmic and data representation techniques from the field of computational geometry. 

 

Issues 

While the technology for monitoring vehicles has been improving over the years, monitoring 

intersections and areas of congested traffic remains a very challenging problem.  Several issues 

must be addressed in order to effectively monitor intersections and prevent accidents: 

 Shadows.  Vehicles cast shadows as they travel, sometimes on top of other vehicles.  

Separating a vehicle from a shadow is a challenging problem, as shadows are not 

necessarily uniformly dark and may be the same color as the vehicle being tracked.  Most 

methods that have been used to date lack an effective means to model shadows. 



 Occlusions.  Occlusions occur when something obscures a vehicle on the road.  This may 

be a stationary object such as a tree or another vehicle.  Using an elevated camera 

minimizes occlusions, but in the case of an intersection this is not desirable as the goal is 

to monitor traffic in all directions. 

 Stop-and-Go.  In congested traffic and at intersections, vehicles must slow down to a 

stop.  Our system must keep track of vehicles even when they are not moving, meaning 

that usual tracking methods that separate moving objects from the background will fail. 

 

Possible Solutions 

The goal of our current work is to overcome these issues and create a system that can effectively 

predict vehicle collisions.  At present, this system consists of a Vision Module for monitoring the 

intersection and a Collision Prediction Module to predict potentially dangerous situations. 

 

Vision Module 

The images captured by the camera(s) are analyzed in the Vision Module.  The input to the 

Vision Module consists of a sequence of images; the outputs from the module are the positions 

and trajectories of the tracked entities.  An adaptive background segmentation scheme (like that 

used by Stauffer et al. [11]) is used for learning the model of the background during the course of 

tracking.  This model is used to make the background subtraction robust to changes in lighting 

conditions in the scene.  In the next step, the individual foreground regions are extracted using a 

connected components method.  A region tracking method is used for tracking the moving 

vehicles and pedestrians in the image.  For tracking, two levels of abstraction are used: the blob 

level and the object level.  In the blob level, the individual regions extracted in the current frame 



are compared with those in the previous frame to establish correspondences.  The relations are 

represented in the form of a bipartite graph.  The tracking method used is similar to Masoud’s 

pedestrian tracker [12].  In the next step, the information from the blob level is passed on to the 

object level. 

  

Some of the issues faced in tracking are the following: 

 Splitting and merging of blobs due to the background estimation method 

 Occlusions 

 Cast shadows that move 

 Stopping of vehicles for long periods. 

 

An inherent weakness of the background estimation method is that the individual vehicles are not 

always segmented into one whole region; instead, they are segmented into groups of small 

regions (Figure 2).  These regions merge eventually, but might split again later.  This leads to 

errors in the tracking process.  This is an issue in the Collision Prediction Module as well.  If a 

single vehicle is segmented into two regions (which will seem to be near one another), the 

system might raise a false collision alarm. 

 

As discussed above, occlusions can be a problem, especially in typical outdoor scenes with a 

large number of vehicles and pedestrians.  These occlusions are another source of errors in the 

Vision Module. 

 



Moving shadows in the images cannot be segmented out by the background segmentation 

method.  Shadows distort the shape of the moving objects and affect the segmentation of the 

individual objects.  Accurate object shape estimation is very critical for the Collision Prediction 

Module.  Hence, shadows cause very serious problems not only with tracking but also in the 

Collision Prediction Module. 

 

In order to address the above issues, we are investigating the following: 

 Kalman filtering and 

 Shadow detection. 

 

Kalman filtering: 

We are developing a Kalman filter [13] for improving tracking accuracy.  The Kalman filter can 

improve the estimates of the tracker by providing predictions based on past position 

measurements.  A Kalman filter operates by using a set of predictor and corrector equations.  The 

input to the filter consists of measurements in the form of the center position of the bounding box 

of the object in image coordinates.  These are converted to scene coordinates and represented 

inside the filter.  The filter estimates the object’s position in scene coordinates.  An extended 

Kalman filter is used due to the non-linearity in the transformation from the image to scene 

coordinates.  The use of center coordinates to represent the position of the objects holds only for 

objects that have low height to width ratio.  For objects like a bus this assumption no longer 

holds and estimation accuracy might be negatively affected. 

 

 



 

 

Figure 2: Splitting of individual vehicles into multiple vehicles. The figure also illustrates the 

merging of the height and length information into one. 

  

Detecting shadows: 

The Collision Prediction Module (CPM) relies on the Vision Module to furnish correct estimates 

of vehicle size and shape so that it can predict collisions with a high degree of confidence.  The 

accuracy of the vehicle’s size estimate is often limited by the presence of cast shadows.  Our 

system uses a shadow detection and elimination scheme based on the fast marching method.  

This method is used to correct the vehicles’ size and shape estimates by eliminating the shadows 

before these estimates are sent to the CPM. 

 

The main idea behind the fast marching method is that - given the existence of two regions that 

are separated by a coarsely defined boundary, a moving front can be made to align itself with this 

boundary.  The speed of this front is given by a speed function, F, which is dependent on the 

intensity of the image pixels on which the front moves.  Hence, if the vehicle and its shadow are 

considered as two regions that are separated by a vehicle-shadow boundary, a moving front can 

be placed at a region near the boundary.  This initial placement is called “seeding,” and a seed 



can be just a point.  This seed will gradually grow into a closed region and continue growing 

until it reaches an equilibrium which will be at the vehicle-shadow boundary – for a carefully 

chosen speed function F.  Once the seed has reached the boundary, the resulting region can be 

then classified as either a vehicle or a shadow, and this information is conveyed to the CPM. 

 

Collision Prediction Module 

The Collision Prediction Module (CPM) employs techniques from the field of computational 

geometry to formulate and solve collision prediction problems.  The approach we use is to find 

novel ways to represent features of an intersection as geometric entities (Figure 3).  Such a 

representation allows the use of efficient data structures and algorithms – which are essential for 

the CPM to work in real-time.  The CPM represents all of the features in an intersection as 

simple geometric shapes like polygons or circles.  These features are then categorized as fixed, 

transient, or moving obstacles based on the nature of the real world entities they represent.  

Further, these obstacles may be classified as rigid, quasi-rigid, or deformable depending on the 

temporal variation of the size and shape of the obstacle.  Finally, the notion of obstacle modeling 

derives from the fact that every vehicle views every other entity in the intersection as a possible 

obstacle.    

 

The CPM currently employs a simple array of vertices to represent each geometric entity.  This 

representation together with the obstacle classifications completes the definition of real-world 

intersection entities.  The obstacle classification helps in optimizing the collision prediction 

process by identifying classes that should not be checked against each other.  For instance, fixed 

obstacles are not checked for collisions with each other, and pedestrians are never checked for 



collisions with fixed obstacles.  Currently, the CPM has two collision-prediction schemes to 

choose from: 

 

1. A simple, brute force algorithm that checks for collisions between each vehicle-type 

obstacle with every other obstacle for a specified number of future time steps. 

2. A more sophisticated two-step algorithm that consists of dividing the entire intersection 

into a fixed number of polygons (e.g., rectangles), each maintaining an occupancy list of 

obstacles that it contains (either partially or fully).  Each vehicle-type obstacle is then 

checked for collisions with every other obstacle in all of the occupancy lists in which it is 

listed. 

 

The CPM chooses the first approach when the number of vehicles in the intersection falls below 

a pre-determined number and switches to the more efficient two-step algorithm when the 

intersection traffic increases.  Both the approaches rely on a polygon-clipping algorithm to detect 

possible collisions between the obstacles.  Clipping in two dimensions is the process of 

'trimming' a geometric shape about a clipping line, just like cutting a paper along straight lines 

with a pair of scissors.  The clipping algorithm operates on two polygonal entities by choosing 

one of them as reference.  The edges of the reference polygon are then used to 'clip' the other 

polygon sequentially until all the edges of the reference polygon have been used.  If the clipped 

area of the other polygon (i.e., the area it shares with the reference polygon) is zero, then we 

conclude that there is no collision; otherwise, there is a collision.  Once the CPM has been tested 

and integrated into the Vision Module, we will explore techniques for speeding up collision 

prediction using efficient geometric techniques [4]. 



 

Figure 3: Intersection features modeled as geometric entities.  R, V, and S are geometric 

representation of road features, vehicles and signals respectively.  The thin lines show the 

partition scheme used for computing the occupancy list in the two-step collision prediction 

algorithm. 

 



 

 

Conclusions 

Intersection monitoring and collision prediction is a challenging problem, yet one that has the 

potential to save thousands of lives once it has been solved.  We are currently working on a 

system to deal with this problem and the issues associated with it, such as occlusions, shadows, 

and the stop-and-go problem.  At present we have created a Vision Module, to track vehicles, as 

well as a Collision Prediction Module, to predict potential collisions.  As we continue in our 

research and refine our system, we look forward to finding a solution to these problems and 

enhancing traffic safety. 
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