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Abstract RoboCup, the international robot soccer competition, poses a set of
extremely difficult challenges for multi-robot systems. To be competi-
tive in RoboCup’s rapidly-changing, dynamic, adversarial environment,
teams need to make use of effective coordination strategies. We describe
some of our experiences with effective coordination of robots teams
and introduce several levels of strategies which encapsulate coordina-
tion from the level of individual robots to synchronized coordination of
the entire team.
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1. Introduction
The RoboCup robot soccer competition is a domain in which teams

must address the challenges of real-time perception, cognition, and ac-
tion. Robots must be able to operate in a very dynamic environment in
which they must reason not only about the actions of their teammates,
but also about the actions of a team of adversarial agents. Teams of
robots that operate without an effective teamwork strategy are likely to
hamper each other’s efforts and perform as an inferior team. Our pri-
mary research interests are in exploring the scientific challenges of de-
veloping effective teamwork strategies for autonomous robotic systems
where all sensing and cognition is done on-board the robot.

We have had extensive experience with robot positioning ranging from
early work in simulated robot soccer players (Veloso et al., 1999) to the
Sony AIBO league (Uther et al., 2002). In this previous work, we made
use of artificial potential field methods and have found them to be a
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very powerful way of representing multiple constraints when positioning
robots. However, there are a number of limitations in the kinds of be-
haviors that potential fields can express. We are actively exploring other
coordination strategies which we will describe in more detail.

This paper focuses on developing team strategies for robots that com-
pete in the RoboCup (Kitano et al., 1997) legged league. We discuss
various approaches for teamwork and cooperation, and describe some
empirical results from experiments.

1.1 Related Work
Potential field methods have been used very successfully for navigation

tasks such as obstacle avoidance (Khatib, 1985). This idea has been
extended such that a group of robots can maintain formations while
using only local information in their potential calculations (Balch and
Arkin, 1998; Balch and Hybinette, 2000).

Several groups have encoded domain-specific heuristics into potential
fields. In the RoboCup domain, potential fields can be constructed that
guide robots to an area near the opponent’s goal or to an open position
that is well-suited for pass reception (Castelpietra et al., 2001; Veloso
et al., 1999; Weigel et al., 2001). A behavior architecture that relies
on potential fields for motion planning and action selection is described
in (Laue and Röfer, 2004). Their approach has been applied to real
robots, including the German Team of the RoboCup legged league.

Potential field methods have several limitations that have been re-
ported in the literature, including susceptibility to local minima and
oscillations (Koren and Borenstein, 1991). An approach known as for-
ward chaining dynamically reshapes the potential field using heuristics
that guide the robot to the goal through a series of subgoals or waypoints
that attempt to avoid local minima (Bell and Weir, 2004). The forward
chaining approach is particularly interesting to us because it utilizes the
idea of a positioning function that changes over time.

1.2 Coordination in Robot Soccer
We have been researching coordination strategies for the different

RoboCup robot soccer leagues for several years. RoboCup robot soc-
cer in general (Kitano et al., 1997) offers a very challenging research
environment for multi-robot systems. One of the most interesting as-
pects of the RoboCup leagues is that we change the rules of the game
and the playing environment every year in order to increase the difficulty
of the problem towards matching real setups as much as possible.
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Of particular interest to this paper is our work in the RoboCup legged
league with the Sony AIBO four-legged robots, which need to be fully au-
tonomous with on-board sensing, computation, and action. The legged
league in particular has gone through several changes since 1998. Some
of the most significant changes occurred in 2002 and have made the most
impact in our multi-robot research efforts.

Communicating robots: The AIBO robots are now equipped with
the ability to communicate wirelessly. In the initial years, when
the robots could not communicate, we achieved teamwork through
vision of the position of the ball – the robots’ behaviors were vision-
servoed. Three attacker robots searched for the ball; as soon as
they saw the ball, they would move towards it and then move the
ball towards the opponent goal. Because the ball was often not in
the robots’ field of view, due to the occlusion by other robots and
the robots’ own search for localization markers, not all the robots
could see the ball. Teamwork was a property that emerged due to
this discontinuity of ball perception: when one robot saw the ball,
it would move toward the ball, tending to block the ball from the
view of its teammates. Because of this occlusion, the teammates
would remain spread out from the “attacker.” Now that communi-
cation is available between robots, we have researched methods of
sharing information (Roth et al., 2003) and dynamically changing
robot roles and positioning (Vail and Veloso, 2003). In this paper,
we discuss the different levels of dynamic coordination necessary in
the presence of skilled opponent teams. We present the solutions
that we have developed and plan to continue researching.

World space increase: The field’s size has increased by approximately
50% from its initial size, and the number of robots in a team has
increased from three to four. The increase in field size makes it
infeasible for robots to see across the entire field. In the initial
smaller field, individual robots could recognize objects across the
complete field. Modeling the world state is now a task that needs to
combine a robot’s own perception and the communicated informa-
tion from other robots. Multiple robots need to build an accurate
world model and select joint actions that fit a team policy.

Rules of the game: The rules of the game set constraints on the legal
positioning and actions of robots. For example, only one robot is
allowed to defend the goal area. This type of rule creates hard con-
straints on the dynamic positioning of team members. In addition,
robots encounter difficult motion situations when surrounded by
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opponent robots. In these situations, a team member may need the
help of robot teammates. This is a challenge that requires an ef-
fective dynamic coordination algorithm that monitors the progress
of teammates. In addition, teamwork should change as a function
of the opponent team, the specific state of the field, and the re-
maining time of the game.

The RoboCup legged league continues to motivate our research in
multi-robot domains, inspiring incremental algorithmic successes and
providing many issues to be addressed. Interestingly, the more we work
on this adversarial multi-robot coordination problem, the more we un-
derstand how the problems we face go well beyond robot soccer and are
of relevance to multi-robot systems in complex environments. In this
paper, we present our findings aiming at such an abstract level.

2. Dynamic Multi-Robot Coordination
Over the past few years, teams have experimented with different meth-

ods of team coordination. Many of these strategies involve keeping team-
mates from running into each other and placing teammates in good loca-
tions on the field so that they can be in good positions to receive passes
or go after a free ball. While there have been some good approaches,
no one strategy has emerged as being clearly superior to all others. One
reason for this is that several different coordination strategies are likely
to be applicable in a single situation. Since some strategies may work
better than others, a team that selects the superior strategy will be at an
advantage. Thus, one of the most important problems to address when
designing a multi-robot soccer team is selecting the kind of coordination
strategy that will be used during the game. Teams may choose to use
a fixed coordination strategy defined a priori, but if chosen poorly, a
fixed strategy may not fare well against the strategy of the other team.
Thus, an important extension to the research problem of coordination
strategies is the ability for a team to dynamically change their strategy
at runtime to adapt to their opponents’ strengths and weaknesses.

Dynamically selecting a different strategy depending on the situation
can be very powerful technique, but can be very challenging to imple-
ment well. Robots that use a dynamic coordination system must be able
to perceive and properly evaluate the state of the world as well as the
state of their own progress. This information is vital when making the
decision to switch from a poorly performing strategy to one that could
potentially work better.

We have identified several different levels for dynamic coordination
that can be applied to a robotic team. These include:
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A “first-order” approach, where the robots use a fixed coordination
strategy and each robot modifies the parameters of its behavior
according to the world state.

A “second-order” approach, where the robots have multiple ways
of handling different situations. In order to utilize a second-order
strategy, the robots must be able to evaluate the world state so
that they can choose between the different behaviors they have at
their disposal.

A “third-order” approach, where the robots have several different
team strategies, or “plays,” which describe the coordinated actions
of all of the robots together. Depending on the world state, differ-
ent plays may apply; the team collectively decides upon the right
behavior to apply in a given situation.

We have implemented methods for first- and second-order coordina-
tion strategies, a description of which is provided below. Currently,
the third level of coordination has been implemented in our small-sized
league (Bowling et al., 2004) but not yet on the AIBOs.

2.1 Changing Single Robot Parameters
We define the first-order coordination strategy as the ability for the

robots to set their own behavior based on the state of the world. In
this kind of system, each robot is programmed with a single behavior
set which is used to control the robot’s behavior in its environment.

We have tried two different methods for representing first-order coor-
dination strategies. The first is a potential fields approach and the other
is an approach that we call constraint-based positioning. In previous
work (Vail and Veloso, 2003), we give a detailed description of our im-
plementation of potential field-based coordination. In this approach, we
use potential fields both to determine the role that each robot plays (at-
tacker, supporting attacker, and defender) and also to determine where
the supporting robots position themselves on the field of play. On effi-
ciency issue with potential fields occurs when they are used to coordinate
the actions of a team of robots in a very dynamic world. In this situ-
ation, the fields may need to be recomputed for each every new sensor
reading. This does not tend to be true for implementations of poten-
tial fields that are used for navigation in more static environments. In
general, however, it’s possible for minor disturbances in the positions
or strengths of individual attraction and repulsion fields to cause fairly
significant changes in the local gradient surrounding the robot.
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Constraint-based positioning is an approach to robot positioning that
we have developed in the last year for the 2004 RoboCup competition.
Under this regime, robots are still assigned roles using a potential func-
tion, but the field positions chosen by the supporting robots are subject
to a set of constraints. This approach was developed because there are
several hard constraints that we would like to enforce on the robots’
positions which are difficult to specify clearly with potential fields. For
instance, defender robots need to avoid their own goalie’s defense box,
because entering the defense box is a violation which will cause the
robot to be removed from play for 30 seconds. Other constraints that
we would like to enforce include not crossing in front of a robot that
is about to take a shot on goal, not coming within a certain minimum
distance of a teammate, and so on. Consider a situation in which a
robot is near the defense zone and a teammate is directly approaching
it. Should the robot move toward the goal, violating the defense-zone
constraint, or stand still, violating the teammate-distance constraint?
Our implementation of constraint-based positioning allows us to priori-
tize the constraints, so that the robot knows that entering the defense
zone is a more serious violation than coming near a teammate. In the-
ory, the priorities of these constraints could be represented as a potential
field, but we have found that debugging the complex potential fields that
result can be difficult. If no constraints are in danger of being violated,
the robot can choose to move to a specific point that is chosen based
on the current state of the world. In this case, the robot can still use
potential fields to choose an open area on the field or to choose a path
to navigate around local obstacles.

Our experience with RoboCup has been that a single positioning func-
tion defined for a particular role tends to be too limiting. Trying to
capture all of the possible actions that a robot might accomplish can
cause the complexity of the positioning function to grow beyond what
is manageable. A soccer-playing robot might have multiple ways of ap-
proaching the goal, each of which has advantages depending on the rel-
ative position of the goalie and/or his other players. In some situations,
the robot may want to try one approach and if it fails, try a different
approach. Behaviors like these may be mutually exclusive and as such
could be very difficult for a single function to capture.

2.2 Changing Single Robot Behaviors
An alternative is to factor the problem into subproblems and make

multiple positioning functions available for the robot to use. In this
case, a second-order decision process must exist whose purpose is to
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evaluate the state of the world and/or the current performance of the
robot. This decision process is responsible for deciding which positioning
function should be used in a particular situation.

Designing multiple behaviors such as these with potential fields re-
quires that an entirely new set of potential attractor/repulsor nodes be
defined for each of the new behaviors. A single set of nodes cannot
be used for independent behaviors because the individual nodes are not
independent of each other. They all affect one another.

Another challenge with potential fields is that in the case of multiple
specific and possibly exclusive behavior sets, a robot may be expected to
approach a very specific location on the field and stay there. Specifying
a specific (x, y, θ) location on the field would be fairly straightforward for
a constraint-based system to handle, but designing the potentials such
that they push the robot to a specific location on the field can be a very
challenging task. An extreme solution for the potential fields approach
is to have a single potential attractor that pulls the robot to the specified
point. This suggests that having control over the attraction/repulsion
nodes and being able to turn them on and off as necessary would make
the potential field approach work in this situation.

In a constraint-based system, the decision process evaluates the points
on the field and chooses a specific location for the robot to reach. In both
positioning methodologies, a higher-level decision process is in charge of
selecting the specifics of the behavior set by evaluating the state of the
environment and selecting the one with the highest chance of success.

3. Experimental Results
We have performed a set of experiments that show the need for second-

order reasoning in the RoboCup domain. These experiments demon-
strate that we can improve performance by having a higher-level decision
process that changes the positioning strategy based on the environment.
Specifically, we compare the performance of two positioning strategies
under differing environmental conditions, and show that the strategy
which is superior in one situation is inferior in the other situation.

In each experimental trial, we placed the ball in one of the front
corners of the field, and two robots (on the same team) attempted to
score a goal within thirty seconds. We chose this initial position of the
ball because it has traditionally been difficult to score a goal from the
front corner of the field. In this situation, it is not usually possible to
score a goal by a single direct kick; trying to do so will often send the
ball rolling into the opposite corner. From the other corner, the attacker
may very well choose to execute another strong kick toward the goal,
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(a) (b)

Figure 1. Two of the four initial configurations used in the experimental trials.
Image (a) shows the supporter in the center position with a stationary goalie present
on the field. Image (b) shows the supporter in the side position with no goalie.

which can lead to a series of “ping-pong” kicks across the goal until the
goalkeeper clears the ball or until noise in the environment causes the
ball to roll into a different area of the field. The 30-second time limit
only gives the robots enough time to execute approximately three to five
kicks, so we feel that a goal scored within that time limit indicates that
the robots were performing reasonably well during that trial.

In half of the trials, we placed a goalie robot in the defense zone, facing
the corner where the ball was initially placed. The position chosen was
the one that our own goalie would adopt if the ball were placed in that
position. However, the goalie was paused, and therefore did not attempt
to clear the ball or attempt to move from this initial position unless it
was pushed by the other robots. In the other half of the trials, no goalie
was placed on the field.

One of the two robots on the team (the attacker) was placed 75 cm
away from the ball, facing the corner of the field. The supporting robot
was positioned according to one of two different potential fields. Both
fields simply contained a single linear attractor that pulled the supporter
to a desired point. In the side potential field, the supporter was drawn
toward a point on the opposite corner of the goal; in the center potential
field, the supporter was drawn toward a center point about 100 cm from
the front of the goal. See Figure 1 for pictures of the initial configura-
tions of the field, including the supporter positioning induced by the two
different potential fields.

We ran 40 trials for all four different possible setups (with or without
goalie, combined with center or side positioning), for a total of 160 trials.
For each trial, the success or failure of the run was recorded. If the run
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was a success (i.e., it terminated in a goal), we also recorded the amount
of time it took for the robots to score the goal.

Each run started by unpausing the attacker robot; the 30-second timer
was started as soon as the attacker touched the ball. If any robot crashed
or ran out of batteries during a trial, the robot was rebooted and the
trial was restarted from the beginning. Normal RoboCup penalties, such
as player pushing, goalie pushing, and holding, were not enforced. If the
ball was knocked out of the field, it was immediately placed back in-
bounds at the place where it went out, as per the RoboCup 2004 rules.

The results of these experimental runs are summarized in Figure 2.
Figure 3 shows the individual completion times for every trial. Note that
the results are only shown for the runs that were counted as successes;
therefore, each graph has a different number of points plotted.

Successes Failures Mean Time per Success

Side positioning, no goalie 31 9 9.97s
Center positioning, no goalie 27 13 16.91s
Side positioning, with goalie 12 28 23.63s
Center positioning, with goalie 17 23 18.55s

Figure 2. Summary of the results obtained in the experimental trials.

In the no-goalie case, the side positioning succeeded slightly more
often than the center positioning, and the mean time per success was
significantly lower for the side positioning. (Statistical significance of the
mean time determined by Student’s two-tailed t-test, with p = 0.001.)
However, in the runs with the goalie, the center positioning significantly
outperformed the side positioning, with a higher number of successes
and a faster mean time per success. (Statistical significance of the mean
time determined by Student’s two-tailed t-test, with p = 0.047.)

The advantages and disadvantages of each position are easily ex-
plained through a qualitative analysis. The side position does much
better in the no-goalie case because the position of the supporter puts it
in a very good location to intercept the attacker’s kick. After a success-
ful interception, a single head kick is usually sufficient to score a quick
goal. The center positioning does not enable the easy interception of a
missed shot, so it is more likely that the ball will end up in the opposite
corner and require more time before a goal can be scored.

However, when a goalie is added to the field, the weaknesses of the
side positioning become apparent. The initial kick often bounces off
the goalie and stops close to the center of the field, instead of travel-
ing across the field to the other side. In this situation, the supporter
positioned in the center is much more likely to be able to assist the at-
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(a) (b)

(c) (d)

Figure 3. Graphs showing the amount of time it took to successfully score a goal.
Each trial was stopped after 30 seconds if a goal had not yet been scored. Graphs (a)
and (b) show the results for the no-goalie case; graphs (c) and (d) show the results
for the with-goalie case. Trials are sorted from fastest to slowest completion time.

tacker. Furthermore, it is difficult for the side-positioned supporter to
react quickly to changes in the ball’s location, since the supporter’s view
of the ball is often occluded by the goalie. The center positioning is a
more general approach that allows the supporter to chase down the ball
relatively quickly wherever it goes on the field, while the side positioning
is superior in the special case where the opposing goalie is temporarily
outside the defense box.

Though the center positioning is the approach that we would prefer
the majority of the time, there is a definite benefit to being able to use
side positioning to exploit the situation when the goalie is not guarding
the goal. For example, one of the only two goals scored in the (very
defensive) final game of the 2004 US Open occurred when the opposing
goalie temporarily left the defense zone and was inadvertently blocked
from returning to the goal by another robot that had gotten behind it.
The results presented in this section suggest that there is definitely a
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benefit to be gained from using second-order reasoning in multi-robot
systems, especially in an adversarial, dynamic environment.

4. Conclusion / Future Work
In this paper, we have proposed a classification scheme that identifies

various levels of dynamic multi-robot coordination. We have provided
examples showing the limitations of first-order coordination strategies in
the robot soccer domain, and presented experimental results that show
that there is a substantial benefit to our use of second-order reasoning
about team coordination.

In the future, we intend to improve upon our existing coordination
strategies by adding third-order functionality to our team. We plan to
take inspiration from the idea of using a playbook for team coordina-
tion, which has been a successful strategy in the RoboCup small-size
league (Bowling et al., 2004). The effectiveness of playbooks in the
small-size league is largely due to the fact that this league makes use of
an overhead camera and so the state of the entire team can be very eas-
ily determined. The legged league has no such overhead camera system
and so a team state estimate must be computed in a distributed fashion
by merging the local sensory information from each of the robots. We
are actively researching methods for accomplishing this task so that we
can pursue the development of third-order coordination strategies, such
as a playbook, for our RoboCup legged league team.
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